1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
//! An intrusive doubly-linked list.
//!
//! See the [`List`] type for details.
use super::Linked;
use crate::util::FmtOption;
use core::{
cell::UnsafeCell,
fmt, iter,
marker::PhantomPinned,
mem,
pin::Pin,
ptr::{self, NonNull},
};
#[cfg(test)]
#[cfg(not(loom))]
mod tests;
mod cursor;
pub use self::cursor::{Cursor, CursorMut};
/// An [intrusive] doubly-linked list.
///
/// This data structure may be used as a first-in, first-out queue by using the
/// [`List::push_front`] and [`List::pop_back`] methods. It also supports
/// random-access removals using the [`List::remove`] method. This makes the
/// [`List`] type suitable for use in cases where elements must be able to drop
/// themselves while linked into a list.
///
/// This data structure can also be used as a stack or doubly-linked list by using
/// the [`List::pop_front`] and [`List::push_back`] methods.
///
/// The [`List`] type is **not** a lock-free data structure, and can only be
/// modified through `&mut` references.
///
/// In order to be part of a `List`, a type `T` must implement [`Linked`] for
/// [`list::Links<T>`].
///
/// # Examples
///
/// Implementing the [`Linked`] trait for an entry type:
///
/// ```
/// use cordyceps::{
/// Linked,
/// list::{self, List},
/// };
///
/// // This example uses the Rust standard library for convenience, but
/// // the doubly-linked list itself does not require std.
/// use std::{pin::Pin, ptr::{self, NonNull}, thread, sync::Arc};
///
/// /// A simple queue entry that stores an `i32`.
/// #[derive(Debug, Default)]
/// struct Entry {
/// links: list::Links<Entry>,
/// val: i32,
/// }
///
/// // Implement the `Linked` trait for our entry type so that it can be used
/// // as a queue entry.
/// unsafe impl Linked<list::Links<Entry>> for Entry {
/// // In this example, our entries will be "owned" by a `Box`, but any
/// // heap-allocated type that owns an element may be used.
/// //
/// // An element *must not* move while part of an intrusive data
/// // structure. In many cases, `Pin` may be used to enforce this.
/// type Handle = Pin<Box<Self>>;
///
/// /// Convert an owned `Handle` into a raw pointer
/// fn into_ptr(handle: Pin<Box<Entry>>) -> NonNull<Entry> {
/// unsafe { NonNull::from(Box::leak(Pin::into_inner_unchecked(handle))) }
/// }
///
/// /// Convert a raw pointer back into an owned `Handle`.
/// unsafe fn from_ptr(ptr: NonNull<Entry>) -> Pin<Box<Entry>> {
/// // Safety: if this function is only called by the linked list
/// // implementation (and it is not intended for external use), we can
/// // expect that the `NonNull` was constructed from a reference which
/// // was pinned.
/// //
/// // If other callers besides `List`'s internals were to call this on
/// // some random `NonNull<Entry>`, this would not be the case, and
/// // this could be constructing an erroneous `Pin` from a referent
/// // that may not be pinned!
/// Pin::new_unchecked(Box::from_raw(ptr.as_ptr()))
/// }
///
/// /// Access an element's `Links`.
/// unsafe fn links(target: NonNull<Entry>) -> NonNull<list::Links<Entry>> {
/// // Using `ptr::addr_of_mut!` permits us to avoid creating a temporary
/// // reference without using layout-dependent casts.
/// let links = ptr::addr_of_mut!((*target.as_ptr()).links);
///
/// // `NonNull::new_unchecked` is safe to use here, because the pointer that
/// // we offset was not null, implying that the pointer produced by offsetting
/// // it will also not be null.
/// NonNull::new_unchecked(links)
/// }
/// }
///
/// impl Entry {
/// fn new(val: i32) -> Self {
/// Self {
/// val,
/// ..Self::default()
/// }
/// }
/// }
/// ```
///
/// Using a `List` as a first-in, first-out (FIFO) queue with
/// [`List::push_back`] and [`List::pop_front`]:
/// ```
/// # use cordyceps::{
/// # Linked,
/// # list::{self, List},
/// # };
/// # use std::{pin::Pin, ptr::{self, NonNull}, thread, sync::Arc};
/// # #[derive(Debug, Default)]
/// # struct Entry {
/// # links: list::Links<Entry>,
/// # val: i32,
/// # }
/// # unsafe impl Linked<list::Links<Entry>> for Entry {
/// # type Handle = Pin<Box<Self>>;
/// # fn into_ptr(handle: Pin<Box<Entry>>) -> NonNull<Entry> {
/// # unsafe { NonNull::from(Box::leak(Pin::into_inner_unchecked(handle))) }
/// # }
/// # unsafe fn from_ptr(ptr: NonNull<Entry>) -> Pin<Box<Entry>> {
/// # Pin::new_unchecked(Box::from_raw(ptr.as_ptr()))
/// # }
/// # unsafe fn links(target: NonNull<Entry>) -> NonNull<list::Links<Entry>> {
/// # let links = ptr::addr_of_mut!((*target.as_ptr()).links);
/// # NonNull::new_unchecked(links)
/// # }
/// # }
/// # impl Entry {
/// # fn new(val: i32) -> Self {
/// # Self {
/// # val,
/// # ..Self::default()
/// # }
/// # }
/// # }
/// // Now that we've implemented the `Linked` trait for our `Entry` type, we can
/// // create a `List` of entries:
/// let mut list = List::<Entry>::new();
///
/// // Push some entries to the list:
/// for i in 0..5 {
/// list.push_back(Box::pin(Entry::new(i)));
/// }
///
/// // The list is a doubly-ended queue. We can use the `pop_front` method with
/// // `push_back` to dequeue elements in FIFO order:
/// for i in 0..5 {
/// let entry = list.pop_front()
/// .expect("the list should have 5 entries in it");
/// assert_eq!(entry.val, i, "entries are dequeued in FIFO order");
/// }
///
/// assert!(list.is_empty());
/// ```
///
/// Using a `List` as a last-in, first-out (LIFO) stack with
/// [`List::push_back`] and [`List::pop_back`]:
/// ```
/// # use cordyceps::{
/// # Linked,
/// # list::{self, List},
/// # };
/// # use std::{pin::Pin, ptr::{self, NonNull}, thread, sync::Arc};
/// # #[derive(Debug, Default)]
/// # struct Entry {
/// # links: list::Links<Entry>,
/// # val: i32,
/// # }
/// # unsafe impl Linked<list::Links<Entry>> for Entry {
/// # type Handle = Pin<Box<Self>>;
/// # fn into_ptr(handle: Pin<Box<Entry>>) -> NonNull<Entry> {
/// # unsafe { NonNull::from(Box::leak(Pin::into_inner_unchecked(handle))) }
/// # }
/// # unsafe fn from_ptr(ptr: NonNull<Entry>) -> Pin<Box<Entry>> {
/// # Pin::new_unchecked(Box::from_raw(ptr.as_ptr()))
/// # }
/// # unsafe fn links(target: NonNull<Entry>) -> NonNull<list::Links<Entry>> {
/// # let links = ptr::addr_of_mut!((*target.as_ptr()).links);
/// # NonNull::new_unchecked(links)
/// # }
/// # }
/// # impl Entry {
/// # fn new(val: i32) -> Self {
/// # Self {
/// # val,
/// # ..Self::default()
/// # }
/// # }
/// # }
/// let mut list = List::<Entry>::new();
///
/// // Push some entries to the list:
/// for i in 0..5 {
/// list.push_back(Box::pin(Entry::new(i)));
/// }
///
/// // Note that we have reversed the direction of the iterator, since
/// // we are popping from the *back* of the list:
/// for i in (0..5).into_iter().rev() {
/// let entry = list.pop_back()
/// .expect("the list should have 5 entries in it");
/// assert_eq!(entry.val, i, "entries are dequeued in LIFO order");
/// }
///
/// assert!(list.is_empty());
/// ```
///
/// [intrusive]: crate#intrusive-data-structures
/// [`list::Links<T>`]: crate::list::Links
pub struct List<T: Linked<Links<T>> + ?Sized> {
head: Link<T>,
tail: Link<T>,
len: usize,
}
/// Links to other nodes in a [`List`].
///
/// In order to be part of a [`List`], a type must contain an instance of this
/// type, and must implement the [`Linked`] trait for `Links<Self>`.
pub struct Links<T: ?Sized> {
inner: UnsafeCell<LinksInner<T>>,
}
/// Iterates over the items in a [`List`] by reference.
pub struct Iter<'list, T: Linked<Links<T>> + ?Sized> {
_list: &'list List<T>,
/// The current node when iterating head -> tail.
curr: Link<T>,
/// The current node when iterating tail -> head.
///
/// This is used by the [`DoubleEndedIterator`] impl.
curr_back: Link<T>,
/// The number of remaining entries in the iterator.
len: usize,
}
/// Iterates over the items in a [`List`] by mutable reference.
pub struct IterMut<'list, T: Linked<Links<T>> + ?Sized> {
_list: &'list mut List<T>,
/// The current node when iterating head -> tail.
curr: Link<T>,
/// The current node when iterating tail -> head.
///
/// This is used by the [`DoubleEndedIterator`] impl.
curr_back: Link<T>,
/// The number of remaining entries in the iterator.
len: usize,
}
/// An owning iterator over the elements of a [`List`].
///
/// This `struct` is created by the [`into_iter`] method on [`List`]
/// (provided by the [`IntoIterator`] trait). See its documentation for more.
///
/// [`into_iter`]: List::into_iter
/// [`IntoIterator`]: core::iter::IntoIterator
pub struct IntoIter<T: Linked<Links<T>> + ?Sized> {
list: List<T>,
}
/// An iterator returned by [`List::drain_filter`].
pub struct DrainFilter<'list, T, F>
where
F: FnMut(&T) -> bool,
T: Linked<Links<T>> + ?Sized,
{
cursor: CursorMut<'list, T>,
pred: F,
}
type Link<T> = Option<NonNull<T>>;
#[repr(C)]
struct LinksInner<T: ?Sized> {
next: Link<T>,
prev: Link<T>,
/// Linked list links must always be `!Unpin`, in order to ensure that they
/// never recieve LLVM `noalias` annotations; see also
/// <https://github.com/rust-lang/rust/issues/63818>.
_unpin: PhantomPinned,
}
// ==== impl List ====
impl<T: Linked<Links<T>> + ?Sized> List<T> {
/// Returns a new empty list.
#[must_use]
pub const fn new() -> List<T> {
List {
head: None,
tail: None,
len: 0,
}
}
/// Moves all elements from `other` to the end of the list.
///
/// This reuses all the nodes from `other` and moves them into `self`. After
/// this operation, `other` becomes empty.
///
/// This operation should complete in *O*(1) time and *O*(1) memory.
pub fn append(&mut self, other: &mut Self) {
// TODO(eliza): this could be rewritten to use `let ... else` when
// that's supported on `cordyceps`' MSRV.
let tail = match self.tail {
Some(tail) => tail,
None => {
// if this list is empty, simply replace it with `other`
debug_assert!(self.is_empty());
mem::swap(self, other);
return;
}
};
// if `other` is empty, do nothing.
if let Some((other_head, other_tail, other_len)) = other.take_all() {
// attach the other list's head node to this list's tail node.
unsafe {
T::links(tail).as_mut().set_next(Some(other_head));
T::links(other_head).as_mut().set_prev(Some(tail));
}
// this list's tail node is now the other list's tail node.
self.tail = Some(other_tail);
// this list's length increases by the other list's length, which
// becomes 0.
self.len += other_len;
}
}
/// Attempts to split the list into two at the given index (inclusive).
///
/// Returns everything after the given index (including the node at that
/// index), or `None` if the index is greater than the list's [length].
///
/// This operation should complete in *O*(*n*) time.
///
/// # Returns
///
/// - [`Some`]`(`[`List`]`<T>)` with a new list containing every element after
/// `at`, if `at` <= `self.len()`
/// - [`None`] if `at > self.len()`
///
/// [length]: Self::len
pub fn try_split_off(&mut self, at: usize) -> Option<Self> {
let len = self.len();
// what is the index of the last node that should be left in this list?
let split_idx = match at {
// trying to split at the 0th index. we can just return the whole
// list, leaving `self` empty.
0 => return Some(mem::replace(self, Self::new())),
// trying to split at the last index. the new list will be empty.
at if at == len => return Some(Self::new()),
// we cannot split at an index that is greater than the length of
// this list.
at if at > len => return None,
// otherwise, the last node in this list will be `at - 1`.
at => at - 1,
};
let mut iter = self.iter();
// advance to the node at `split_idx`, starting either from the head or
// tail of the list.
let dist_from_tail = len - 1 - split_idx;
let split_node = if split_idx <= dist_from_tail {
// advance from the head of the list.
for _ in 0..split_idx {
iter.next();
}
iter.curr
} else {
// advance from the tail of the list.
for _ in 0..dist_from_tail {
iter.next_back();
}
iter.curr_back
};
Some(unsafe { self.split_after_node(split_node, at) })
}
/// Split the list into two at the given index (inclusive).
///
/// Every element after the given index, including the node at that
/// index, is removed from this list, and returned as a new list.
///
/// This operation should complete in *O*(*n*) time.
///
/// # Returns
///
/// A new [`List`]`<T>` containing every element after the index `at` in
/// this list.
///
/// # Panics
///
/// If `at > self.len()`.
#[track_caller]
#[must_use]
pub fn split_off(&mut self, at: usize) -> Self {
match self.try_split_off(at) {
Some(new_list) => new_list,
None => panic!(
"Cannot split off at a nonexistent index (the index was {} but the len was {})",
at,
self.len()
),
}
}
/// Returns `true` if this list is empty.
#[inline]
pub fn is_empty(&self) -> bool {
if self.head.is_none() {
debug_assert!(
self.tail.is_none(),
"inconsistent state: a list had a tail but no head!"
);
debug_assert_eq!(
self.len, 0,
"inconsistent state: a list was empty, but its length was not zero"
);
return true;
}
debug_assert_ne!(
self.len, 0,
"inconsistent state: a list was not empty, but its length was zero"
);
false
}
/// Returns the number of elements in the list.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Asserts as many of the linked list's invariants as possible.
#[track_caller]
pub fn assert_valid(&self) {
self.assert_valid_named("")
}
/// Asserts as many of the linked list's invariants as possible.
#[track_caller]
pub(crate) fn assert_valid_named(&self, name: &str) {
// TODO(eliza): this could be rewritten to use `let ... else` when
// that's supported on `cordyceps`' MSRV.
let head = match self.head {
Some(head) => head,
None => {
assert!(
self.tail.is_none(),
"{name}if the linked list's head is null, the tail must also be null"
);
assert_eq!(
self.len, 0,
"{name}if a linked list's head is null, its length must be 0"
);
return;
}
};
assert_ne!(
self.len, 0,
"{name}if a linked list's head is not null, its length must be greater than 0"
);
assert_ne!(
self.tail, None,
"{name}if the linked list has a head, it must also have a tail"
);
let tail = self.tail.unwrap();
let head_links = unsafe { T::links(head) };
let tail_links = unsafe { T::links(tail) };
let head_links = unsafe { head_links.as_ref() };
let tail_links = unsafe { tail_links.as_ref() };
if head == tail {
assert_eq!(
head_links, tail_links,
"{name}if the head and tail nodes are the same, their links must be the same"
);
assert_eq!(
head_links.next(),
None,
"{name}if the linked list has only one node, it must not be linked"
);
assert_eq!(
head_links.prev(),
None,
"{name}if the linked list has only one node, it must not be linked"
);
return;
}
let mut curr = Some(head);
let mut actual_len = 0;
while let Some(node) = curr {
let links = unsafe { T::links(node) };
let links = unsafe { links.as_ref() };
links.assert_valid(head_links, tail_links);
curr = links.next();
actual_len += 1;
}
assert_eq!(
self.len, actual_len,
"{name}linked list's actual length did not match its `len` variable"
);
}
/// Removes an item from the tail of the list.
///
/// This operation should complete in *O*(1) time.
///
/// This returns a [`Handle`] that owns the popped element. Dropping the
/// [`Handle`] will drop the element.
///
/// # Returns
///
/// - [`Some`]`(T::Handle)` containing the last element of this list, if the
/// list was not empty.
/// - [`None`] if this list is empty.
///
/// [`Handle`]: crate::Linked::Handle
pub fn pop_back(&mut self) -> Option<T::Handle> {
let tail = self.tail?;
self.len -= 1;
unsafe {
let mut tail_links = T::links(tail);
// tracing::trace!(?self, tail.addr = ?tail, tail.links = ?tail_links, "pop_back");
self.tail = tail_links.as_ref().prev();
debug_assert_eq!(
tail_links.as_ref().next(),
None,
"the tail node must not have a next link"
);
if let Some(prev) = tail_links.as_mut().prev() {
T::links(prev).as_mut().set_next(None);
} else {
self.head = None;
}
tail_links.as_mut().unlink();
// tracing::trace!(?self, tail.links = ?tail_links, "pop_back: popped");
Some(T::from_ptr(tail))
}
}
/// Removes an item from the head of the list.
///
/// This operation should complete in *O*(1) time.
///
/// This returns a [`Handle`] that owns the popped element. Dropping the
/// [`Handle`] will drop the element.
///
/// # Returns
///
/// - [`Some`]`(T::Handle)` containing the last element of this list, if the
/// list was not empty.
/// - [`None`] if this list is empty.
///
/// [`Handle`]: crate::Linked::Handle
pub fn pop_front(&mut self) -> Option<T::Handle> {
let head = self.head?;
self.len -= 1;
unsafe {
let mut head_links = T::links(head);
self.head = head_links.as_ref().next();
if let Some(next) = head_links.as_mut().next() {
T::links(next).as_mut().set_prev(None);
} else {
self.tail = None;
}
head_links.as_mut().unlink();
Some(T::from_ptr(head))
}
}
/// Appends an item to the tail of the list.
///
/// This operation should complete in *O*(1) time.
///
/// This takes a [`Handle`] that owns the appended `item`. While the element
/// is in the list, it is owned by the list, and will be dropped when the
/// list is dropped. If the element is removed or otherwise unlinked from
/// the list, ownership is assigned back to the [`Handle`].
///
/// [`Handle`]: crate::Linked::Handle
pub fn push_back(&mut self, item: T::Handle) {
let ptr = T::into_ptr(item);
assert_ne!(self.tail, Some(ptr));
unsafe {
T::links(ptr).as_mut().set_next(None);
T::links(ptr).as_mut().set_prev(self.tail);
if let Some(tail) = self.tail {
T::links(tail).as_mut().set_next(Some(ptr));
}
}
self.tail = Some(ptr);
if self.head.is_none() {
self.head = Some(ptr);
}
self.len += 1;
}
/// Appends an item to the head of the list.
///
/// This operation should complete in *O*(1) time.
///
/// This takes a [`Handle`] that owns the appended `item`. While the element
/// is in the list, it is owned by the list, and will be dropped when the
/// list is dropped. If the element is removed or otherwise unlinked from
/// the list, ownership is assigned back to the [`Handle`].
///
/// [`Handle`]: crate::Linked::Handle
pub fn push_front(&mut self, item: T::Handle) {
let ptr = T::into_ptr(item);
// tracing::trace!(?self, ?ptr, "push_front");
assert_ne!(self.head, Some(ptr));
unsafe {
T::links(ptr).as_mut().set_next(self.head);
T::links(ptr).as_mut().set_prev(None);
// tracing::trace!(?links);
if let Some(head) = self.head {
T::links(head).as_mut().set_prev(Some(ptr));
// tracing::trace!(head.links = ?T::links(head).as_ref(), "set head prev ptr",);
}
}
self.head = Some(ptr);
if self.tail.is_none() {
self.tail = Some(ptr);
}
self.len += 1;
// tracing::trace!(?self, "push_front: pushed");
}
/// Returns an immutable reference to the first element in the list.
///
/// This operation should complete in *O*(1) time.
///
/// The node is [`Pin`]ned in memory, as moving it to a different memory
/// location while it is in the list would corrupt the links pointing to
/// that node.
///
/// # Returns
///
/// - [`Some`]`(`[`Pin`]`<&mut T>)` containing a pinned immutable reference to
/// the first element of the list, if the list is non-empty.
/// - [`None`] if the list is empty.
#[must_use]
pub fn front(&self) -> Option<Pin<&T>> {
let head = self.head?;
let pin = unsafe {
// NOTE(eliza): in this case, we don't *need* to pin the reference,
// because it's immutable and you can't move out of a shared
// reference in safe code. but...it makes the API more consistent
// with `front_mut` etc.
Pin::new_unchecked(head.as_ref())
};
Some(pin)
}
/// Returns a mutable reference to the first element in the list.
///
/// The node is [`Pin`]ned in memory, as moving it to a different memory
/// location while it is in the list would corrupt the links pointing to
/// that node.
///
/// This operation should complete in *O*(1) time.
///
/// # Returns
///
/// - [`Some`]`(`[`Pin`]`<&mut T>)` containing a pinned mutable reference to
/// the first element of the list, if the list is non-empty.
/// - [`None`] if the list is empty.
#[must_use]
pub fn front_mut(&mut self) -> Option<Pin<&mut T>> {
let mut node = self.head?;
let pin = unsafe {
// safety: pinning the returned element is actually *necessary* to
// uphold safety invariants here. if we returned `&mut T`, the
// element could be `mem::replace`d out of the list, invalidating
// any pointers to it. thus, we *must* pin it before returning it.
Pin::new_unchecked(node.as_mut())
};
Some(pin)
}
/// Returns a reference to the last element in the list/
///
/// The node is [`Pin`]ned in memory, as moving it to a different memory
/// location while it is in the list would corrupt the links pointing to
/// that node.
///
/// This operation should complete in *O*(1) time.
///
/// # Returns
///
/// - [`Some`]`(`[`Pin`]`<&T>)` containing a pinned immutable reference to
/// the last element of the list, if the list is non-empty.
/// - [`None`] if the list is empty.
#[must_use]
pub fn back(&self) -> Option<Pin<&T>> {
let node = self.tail?;
let pin = unsafe {
// NOTE(eliza): in this case, we don't *need* to pin the reference,
// because it's immutable and you can't move out of a shared
// reference in safe code. but...it makes the API more consistent
// with `front_mut` etc.
Pin::new_unchecked(node.as_ref())
};
Some(pin)
}
/// Returns a mutable reference to the last element in the list, or `None`
/// if the list is empty.
///
/// The node is [`Pin`]ned in memory, as moving it to a different memory
/// location while it is in the list would corrupt the links pointing to
/// that node.
///
/// This operation should complete in *O*(1) time.
///
/// # Returns
///
/// - [`Some`]`(`[`Pin`]`<&T>)` containing a pinned mutable reference to
/// the last element of the list, if the list is non-empty.
/// - [`None`] if the list is empty.
#[must_use]
pub fn back_mut(&mut self) -> Option<Pin<&mut T>> {
let mut node = self.tail?;
let pin = unsafe {
// safety: pinning the returned element is actually *necessary* to
// uphold safety invariants here. if we returned `&mut T`, the
// element could be `mem::replace`d out of the list, invalidating
// any pointers to it. thus, we *must* pin it before returning it.
Pin::new_unchecked(node.as_mut())
};
Some(pin)
}
/// Remove an arbitrary node from the list.
///
/// This operation should complete in *O*(1) time.
///
/// This returns a [`Handle`] that owns the popped element. Dropping the
/// [`Handle`] will drop the element.
///
/// # Returns
///
/// - [`Some`]`(T::Handle)` containing a [`Handle`] that owns `item`, if
/// `item` is currently linked into this list.
/// - [`None`] if `item` is not an element of this list.
///
/// [`Handle`]: crate::Linked::Handle
///
/// # Safety
///
/// The caller *must* ensure that the removed node is an element of this
/// linked list, and not any other linked list.
pub unsafe fn remove(&mut self, item: NonNull<T>) -> Option<T::Handle> {
let mut links = T::links(item);
let links = links.as_mut();
debug_assert!(
!self.is_empty() || !links.is_linked(),
"tried to remove an item from an empty list, but the item is linked!\n\
is the item linked to a different list?\n \
item: {item:p}\n links: {links:?}\n list: {self:?}\n"
);
// tracing::trace!(?self, item.addr = ?item, item.links = ?links, "remove");
let prev = links.set_prev(None);
let next = links.set_next(None);
if let Some(prev) = prev {
T::links(prev).as_mut().set_next(next);
} else if self.head != Some(item) {
// tracing::trace!(?self.head, "item is not head, but has no prev; return None");
return None;
} else {
debug_assert_ne!(Some(item), next, "node must not be linked to itself");
self.head = next;
}
if let Some(next) = next {
T::links(next).as_mut().set_prev(prev);
} else if self.tail != Some(item) {
// tracing::trace!(?self.tail, "item is not tail, but has no prev; return None");
return None;
} else {
debug_assert_ne!(Some(item), prev, "node must not be linked to itself");
self.tail = prev;
}
self.len -= 1;
// tracing::trace!(?self, item.addr = ?item, "remove: done");
Some(T::from_ptr(item))
}
/// Returns a [`CursorMut`] starting at the first element.
///
/// The [`CursorMut`] type can be used as a mutable [`Iterator`]. In addition,
/// however, it also permits modifying the *structure* of the list by
/// inserting or removing elements at the cursor's current position.
#[must_use]
pub fn cursor_front_mut(&mut self) -> CursorMut<'_, T> {
CursorMut::new(self, self.head, 0)
}
/// Returns a [`CursorMut`] starting at the last element.
///
/// The [`CursorMut`] type can be used as a mutable [`Iterator`]. In addition,
/// however, it also permits modifying the *structure* of the list by
/// inserting or removing elements at the cursor's current position.
#[must_use]
pub fn cursor_back_mut(&mut self) -> CursorMut<'_, T> {
let index = self.len().saturating_sub(1);
CursorMut::new(self, self.tail, index)
}
/// Returns a [`Cursor`] starting at the first element.
///
/// The [`Cursor`] type can be used as [`Iterator`] over this list. In
/// addition, it may be seeked back and forth to an arbitrary position in
/// the list.
#[must_use]
pub fn cursor_front(&self) -> Cursor<'_, T> {
Cursor::new(self, self.head, 0)
}
/// Returns a [`Cursor`] starting at the last element.
///
/// The [`Cursor`] type can be used as [`Iterator`] over this list. In
/// addition, it may be seeked back and forth to an arbitrary position in
/// the list.
#[must_use]
pub fn cursor_back(&self) -> Cursor<'_, T> {
let index = self.len().saturating_sub(1);
Cursor::new(self, self.tail, index)
}
/// Returns an iterator over the items in this list, by reference.
#[must_use]
pub fn iter(&self) -> Iter<'_, T> {
Iter {
_list: self,
curr: self.head,
curr_back: self.tail,
len: self.len(),
}
}
/// Returns an iterator over the items in this list, by mutable reference.
#[must_use]
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
let curr = self.head;
let curr_back = self.tail;
let len = self.len();
IterMut {
_list: self,
curr,
curr_back,
len,
}
}
/// Returns an iterator which uses a closure to determine if an element
/// should be removed from the list.
///
/// If the closure returns `true`, then the element is removed and yielded.
/// If the closure returns `false`, the element will remain in the list and
/// will not be yielded by the iterator.
///
/// Note that the closure is *not* permitted to mutate the elements of the
/// list, as a mutable reference could be used to improperly unlink list
/// nodes.
#[must_use]
pub fn drain_filter<F>(&mut self, pred: F) -> DrainFilter<'_, T, F>
where
F: FnMut(&T) -> bool,
{
let cursor = self.cursor_front_mut();
DrainFilter { cursor, pred }
}
/// Inserts the list segment represented by `splice_start` and `splice_end`
/// between `next` and `prev`.
///
/// # Safety
///
/// This method requires the following invariants be upheld:
///
/// - `prev` and `next` are part of the same list.
/// - `prev` and `next` are not the same node.
/// - `splice_start` and `splice_end` are part of the same list, which is
/// *not* the same list that `prev` and `next` are part of.
/// -`prev` is `next`'s `prev` node, and `next` is `prev`'s `prev` node.
/// - `splice_start` is ahead of `splice_end` in the list that they came from.
#[inline]
unsafe fn insert_nodes_between(
&mut self,
prev: Link<T>,
next: Link<T>,
splice_start: NonNull<T>,
splice_end: NonNull<T>,
spliced_length: usize,
) {
debug_assert!(
(prev.is_none() && next.is_none()) || prev != next,
"cannot insert between a node and itself!\n \
prev: {prev:?}\n next: {next:?}",
);
// This method takes care not to create multiple mutable references to
// whole nodes at the same time, to maintain validity of aliasing
// pointers into `element`.
if let Some(prev) = prev {
let links = T::links(prev).as_mut();
debug_assert_eq!(links.next(), next);
links.set_next(Some(splice_start));
} else {
self.head = Some(splice_start);
}
if let Some(next) = next {
let links = T::links(next).as_mut();
debug_assert_eq!(links.prev(), prev);
links.set_prev(Some(splice_end));
} else {
self.tail = Some(splice_end);
}
let start_links = T::links(splice_start).as_mut();
let end_links = T::links(splice_end).as_mut();
debug_assert!(
splice_start == splice_end
|| (start_links.next().is_some() && end_links.prev().is_some()),
"splice_start must be ahead of splice_end!\n \
splice_start: {splice_start:?}\n \
splice_end: {splice_end:?}\n \
start_links: {start_links:?}\n \
end_links: {end_links:?}",
);
start_links.set_prev(prev);
end_links.set_next(next);
self.len += spliced_length;
}
#[inline]
unsafe fn split_after_node(&mut self, split_node: Link<T>, idx: usize) -> Self {
// TODO(eliza): this could be rewritten to use `let ... else` when
// that's supported on `cordyceps`' MSRV.
let split_node = match split_node {
Some(node) => node,
None => return mem::replace(self, Self::new()),
};
// the head of the new list is the split node's `next` node (which is
// replaced with `None`)
let head = unsafe { T::links(split_node).as_mut().set_next(None) };
let tail = if let Some(head) = head {
// since `head` is now the head of its own list, it has no `prev`
// link any more.
let _prev = unsafe { T::links(head).as_mut().set_prev(None) };
debug_assert_eq!(_prev, Some(split_node));
// the tail of the new list is this list's old tail, if the split list
// is not empty.
self.tail.replace(split_node)
} else {
None
};
let split = Self {
head,
tail,
len: self.len - idx,
};
// update this list's length (note that this occurs after constructing
// the new list, because we use this list's length to determine the new
// list's length).
self.len = idx;
split
}
/// Empties this list, returning its head, tail, and length if it is
/// non-empty. If the list is empty, this returns `None`.
#[inline]
fn take_all(&mut self) -> Option<(NonNull<T>, NonNull<T>, usize)> {
let head = self.head.take()?;
let tail = self.tail.take();
debug_assert!(
tail.is_some(),
"if a list's `head` is `Some`, its tail must also be `Some`"
);
let tail = tail?;
let len = mem::replace(&mut self.len, 0);
debug_assert_ne!(
len, 0,
"if a list is non-empty, its `len` must be greater than 0"
);
Some((head, tail, len))
}
}
impl<T> iter::Extend<T::Handle> for List<T>
where
T: Linked<Links<T>> + ?Sized,
{
fn extend<I: IntoIterator<Item = T::Handle>>(&mut self, iter: I) {
for item in iter {
self.push_back(item);
}
}
// TODO(eliza): when `Extend::extend_one` becomes stable, implement that
// as well, so that we can just call `push_back` without looping.
}
impl<T> iter::FromIterator<T::Handle> for List<T>
where
T: Linked<Links<T>> + ?Sized,
{
fn from_iter<I: IntoIterator<Item = T::Handle>>(iter: I) -> Self {
let mut list = Self::new();
list.extend(iter);
list
}
}
unsafe impl<T: Linked<Links<T>> + ?Sized> Send for List<T> where T: Send {}
unsafe impl<T: Linked<Links<T>> + ?Sized> Sync for List<T> where T: Sync {}
impl<T: Linked<Links<T>> + ?Sized> fmt::Debug for List<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { head, tail, len } = self;
f.debug_struct("List")
.field("head", &FmtOption::new(head))
.field("tail", &FmtOption::new(tail))
.field("len", len)
.finish()
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> IntoIterator for &'list List<T> {
type Item = &'list T;
type IntoIter = Iter<'list, T>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> IntoIterator for &'list mut List<T> {
type Item = Pin<&'list mut T>;
type IntoIter = IterMut<'list, T>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<T: Linked<Links<T>> + ?Sized> IntoIterator for List<T> {
type Item = T::Handle;
type IntoIter = IntoIter<T>;
#[inline]
fn into_iter(self) -> Self::IntoIter {
IntoIter { list: self }
}
}
impl<T: Linked<Links<T>> + ?Sized> Drop for List<T> {
fn drop(&mut self) {
while let Some(node) = self.pop_front() {
drop(node);
}
debug_assert!(self.is_empty());
}
}
// ==== impl Links ====
impl<T: ?Sized> Links<T> {
/// Returns new links for a [doubly-linked intrusive list](List).
#[must_use]
pub const fn new() -> Self {
Self {
inner: UnsafeCell::new(LinksInner {
next: None,
prev: None,
_unpin: PhantomPinned,
}),
}
}
/// Returns `true` if this node is currently linked to a [`List`].
pub fn is_linked(&self) -> bool {
self.next().is_some() || self.prev().is_some()
}
fn unlink(&mut self) {
self.inner.get_mut().next = None;
self.inner.get_mut().prev = None;
}
#[inline]
fn next(&self) -> Link<T> {
unsafe { (*self.inner.get()).next }
}
#[inline]
fn prev(&self) -> Link<T> {
unsafe { (*self.inner.get()).prev }
}
#[inline]
fn set_next(&mut self, next: Link<T>) -> Link<T> {
mem::replace(&mut self.inner.get_mut().next, next)
}
#[inline]
fn set_prev(&mut self, prev: Link<T>) -> Link<T> {
mem::replace(&mut self.inner.get_mut().prev, prev)
}
fn assert_valid(&self, head: &Self, tail: &Self)
where
T: Linked<Self>,
{
if ptr::eq(self, head) {
assert_eq!(
self.prev(),
None,
"head node must not have a prev link; node={self:#?}",
);
}
if ptr::eq(self, tail) {
assert_eq!(
self.next(),
None,
"tail node must not have a next link; node={self:#?}",
);
}
assert_ne!(
self.next(),
self.prev(),
"node cannot be linked in a loop; node={self:#?}",
);
if let Some(next) = self.next() {
assert_ne!(
unsafe { T::links(next) },
NonNull::from(self),
"node's next link cannot be to itself; node={self:#?}",
);
}
if let Some(prev) = self.prev() {
assert_ne!(
unsafe { T::links(prev) },
NonNull::from(self),
"node's prev link cannot be to itself; node={self:#?}",
);
}
}
}
impl<T: ?Sized> Default for Links<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: ?Sized> fmt::Debug for Links<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Links")
.field("self", &format_args!("{self:p}"))
.field("next", &FmtOption::new(&self.next()))
.field("prev", &FmtOption::new(&self.prev()))
.finish()
}
}
impl<T: ?Sized> PartialEq for Links<T> {
fn eq(&self, other: &Self) -> bool {
self.next() == other.next() && self.prev() == other.prev()
}
}
/// # Safety
///
/// Types containing [`Links`] may be `Send`: the pointers within the `Links` may
/// mutably alias another value, but the links can only be _accessed_ by the
/// owner of the [`List`] itself, because the pointers are private. As long as
/// [`List`] upholds its own invariants, `Links` should not make a type `!Send`.
unsafe impl<T: Send> Send for Links<T> {}
/// # Safety
///
/// Types containing [`Links`] may be `Sync`: the pointers within the `Links` may
/// mutably alias another value, but the links can only be _accessed_ by the
/// owner of the [`List`] itself, because the pointers are private. As long as
/// [`List`] upholds its own invariants, `Links` should not make a type `!Sync`.
unsafe impl<T: Sync> Sync for Links<T> {}
// === impl Iter ====
impl<'list, T: Linked<Links<T>> + ?Sized> Iterator for Iter<'list, T> {
type Item = &'list T;
fn next(&mut self) -> Option<Self::Item> {
if self.len == 0 {
return None;
}
let curr = self.curr.take()?;
self.len -= 1;
unsafe {
// safety: it is safe for us to borrow `curr`, because the iterator
// borrows the `List`, ensuring that the list will not be dropped
// while the iterator exists. the returned item will not outlive the
// iterator.
self.curr = T::links(curr).as_ref().next();
Some(curr.as_ref())
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> ExactSizeIterator for Iter<'list, T> {
#[inline]
fn len(&self) -> usize {
self.len
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> DoubleEndedIterator for Iter<'list, T> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.len == 0 {
return None;
}
let curr = self.curr_back.take()?;
self.len -= 1;
unsafe {
// safety: it is safe for us to borrow `curr`, because the iterator
// borrows the `List`, ensuring that the list will not be dropped
// while the iterator exists. the returned item will not outlive the
// iterator.
self.curr_back = T::links(curr).as_ref().prev();
Some(curr.as_ref())
}
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> iter::FusedIterator for Iter<'list, T> {}
// === impl IterMut ====
impl<'list, T: Linked<Links<T>> + ?Sized> Iterator for IterMut<'list, T> {
type Item = Pin<&'list mut T>;
fn next(&mut self) -> Option<Self::Item> {
if self.len == 0 {
return None;
}
let mut curr = self.curr.take()?;
self.len -= 1;
unsafe {
// safety: it is safe for us to borrow `curr`, because the iterator
// borrows the `List`, ensuring that the list will not be dropped
// while the iterator exists. the returned item will not outlive the
// iterator.
self.curr = T::links(curr).as_ref().next();
// safety: pinning the returned element is actually *necessary* to
// uphold safety invariants here. if we returned `&mut T`, the
// element could be `mem::replace`d out of the list, invalidating
// any pointers to it. thus, we *must* pin it before returning it.
let pin = Pin::new_unchecked(curr.as_mut());
Some(pin)
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> ExactSizeIterator for IterMut<'list, T> {
#[inline]
fn len(&self) -> usize {
self.len
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> DoubleEndedIterator for IterMut<'list, T> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.len == 0 {
return None;
}
let mut curr = self.curr_back.take()?;
self.len -= 1;
unsafe {
// safety: it is safe for us to borrow `curr`, because the iterator
// borrows the `List`, ensuring that the list will not be dropped
// while the iterator exists. the returned item will not outlive the
// iterator.
self.curr_back = T::links(curr).as_ref().prev();
// safety: pinning the returned element is actually *necessary* to
// uphold safety invariants here. if we returned `&mut T`, the
// element could be `mem::replace`d out of the list, invalidating
// any pointers to it. thus, we *must* pin it before returning it.
let pin = Pin::new_unchecked(curr.as_mut());
Some(pin)
}
}
}
impl<'list, T: Linked<Links<T>> + ?Sized> iter::FusedIterator for IterMut<'list, T> {}
// === impl IntoIter ===
impl<T: Linked<Links<T>> + ?Sized> fmt::Debug for IntoIter<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { list } = self;
f.debug_tuple("IntoIter").field(list).finish()
}
}
impl<T: Linked<Links<T>> + ?Sized> Iterator for IntoIter<T> {
type Item = T::Handle;
#[inline]
fn next(&mut self) -> Option<T::Handle> {
self.list.pop_front()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.list.len, Some(self.list.len))
}
}
impl<T: Linked<Links<T>> + ?Sized> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T::Handle> {
self.list.pop_back()
}
}
impl<T: Linked<Links<T>> + ?Sized> ExactSizeIterator for IntoIter<T> {
#[inline]
fn len(&self) -> usize {
self.list.len
}
}
impl<T: Linked<Links<T>> + ?Sized> iter::FusedIterator for IntoIter<T> {}
// === impl DrainFilter ===
impl<T, F> Iterator for DrainFilter<'_, T, F>
where
F: FnMut(&T) -> bool,
T: Linked<Links<T>> + ?Sized,
{
type Item = T::Handle;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.cursor.remove_first(&mut self.pred)
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(self.cursor.len()))
}
}
impl<T, F> fmt::Debug for DrainFilter<'_, T, F>
where
F: FnMut(&T) -> bool,
T: Linked<Links<T>> + ?Sized,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { cursor, pred: _ } = self;
f.debug_struct("DrainFilter")
.field("cursor", cursor)
.field("pred", &format_args!("..."))
.finish()
}
}