1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
//! Digital I/O
use core::{convert::From, ops::Not};
/// Error
pub trait Error: core::fmt::Debug {
/// Convert error to a generic error kind
///
/// By using this method, errors freely defined by HAL implementations
/// can be converted to a set of generic errors upon which generic
/// code can act.
fn kind(&self) -> ErrorKind;
}
impl Error for core::convert::Infallible {
fn kind(&self) -> ErrorKind {
match *self {}
}
}
/// Error kind
///
/// This represents a common set of operation errors. HAL implementations are
/// free to define more specific or additional error types. However, by providing
/// a mapping to these common errors, generic code can still react to them.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[non_exhaustive]
pub enum ErrorKind {
/// A different error occurred. The original error may contain more information.
Other,
}
impl Error for ErrorKind {
fn kind(&self) -> ErrorKind {
*self
}
}
impl core::fmt::Display for ErrorKind {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
Self::Other => write!(
f,
"A different error occurred. The original error may contain more information"
),
}
}
}
/// Error type trait
///
/// This just defines the error type, to be used by the other traits.
pub trait ErrorType {
/// Error type
type Error: Error;
}
impl<T: ErrorType> ErrorType for &T {
type Error = T::Error;
}
impl<T: ErrorType> ErrorType for &mut T {
type Error = T::Error;
}
/// Digital output pin state
///
/// Conversion from `bool` and logical negation are also implemented
/// for this type.
/// ```rust
/// # use embedded_hal::digital::PinState;
/// let state = PinState::from(false);
/// assert_eq!(state, PinState::Low);
/// assert_eq!(!state, PinState::High);
/// ```
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum PinState {
/// Low pin state
Low,
/// High pin state
High,
}
impl From<bool> for PinState {
#[inline]
fn from(value: bool) -> Self {
match value {
false => PinState::Low,
true => PinState::High,
}
}
}
impl Not for PinState {
type Output = PinState;
#[inline]
fn not(self) -> Self::Output {
match self {
PinState::High => PinState::Low,
PinState::Low => PinState::High,
}
}
}
impl From<PinState> for bool {
#[inline]
fn from(value: PinState) -> bool {
match value {
PinState::Low => false,
PinState::High => true,
}
}
}
/// Single digital push-pull output pin
pub trait OutputPin: ErrorType {
/// Drives the pin low
///
/// *NOTE* the actual electrical state of the pin may not actually be low, e.g. due to external
/// electrical sources
fn set_low(&mut self) -> Result<(), Self::Error>;
/// Drives the pin high
///
/// *NOTE* the actual electrical state of the pin may not actually be high, e.g. due to external
/// electrical sources
fn set_high(&mut self) -> Result<(), Self::Error>;
/// Drives the pin high or low depending on the provided value
///
/// *NOTE* the actual electrical state of the pin may not actually be high or low, e.g. due to external
/// electrical sources
fn set_state(&mut self, state: PinState) -> Result<(), Self::Error> {
match state {
PinState::Low => self.set_low(),
PinState::High => self.set_high(),
}
}
}
impl<T: OutputPin> OutputPin for &mut T {
fn set_low(&mut self) -> Result<(), Self::Error> {
T::set_low(self)
}
fn set_high(&mut self) -> Result<(), Self::Error> {
T::set_high(self)
}
fn set_state(&mut self, state: PinState) -> Result<(), Self::Error> {
T::set_state(self, state)
}
}
/// Push-pull output pin that can read its output state
pub trait StatefulOutputPin: OutputPin {
/// Is the pin in drive high mode?
///
/// *NOTE* this does *not* read the electrical state of the pin
fn is_set_high(&self) -> Result<bool, Self::Error>;
/// Is the pin in drive low mode?
///
/// *NOTE* this does *not* read the electrical state of the pin
fn is_set_low(&self) -> Result<bool, Self::Error>;
}
impl<T: StatefulOutputPin> StatefulOutputPin for &mut T {
fn is_set_high(&self) -> Result<bool, Self::Error> {
T::is_set_high(self)
}
fn is_set_low(&self) -> Result<bool, Self::Error> {
T::is_set_low(self)
}
}
/// Output pin that can be toggled
pub trait ToggleableOutputPin: ErrorType {
/// Toggle pin output.
fn toggle(&mut self) -> Result<(), Self::Error>;
}
impl<T: ToggleableOutputPin> ToggleableOutputPin for &mut T {
fn toggle(&mut self) -> Result<(), Self::Error> {
T::toggle(self)
}
}
/// Single digital input pin
pub trait InputPin: ErrorType {
/// Is the input pin high?
fn is_high(&self) -> Result<bool, Self::Error>;
/// Is the input pin low?
fn is_low(&self) -> Result<bool, Self::Error>;
}
impl<T: InputPin> InputPin for &T {
fn is_high(&self) -> Result<bool, Self::Error> {
T::is_high(self)
}
fn is_low(&self) -> Result<bool, Self::Error> {
T::is_low(self)
}
}