1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
//! Digital I/O

use core::{convert::From, ops::Not};

/// Error
pub trait Error: core::fmt::Debug {
    /// Convert error to a generic error kind
    ///
    /// By using this method, errors freely defined by HAL implementations
    /// can be converted to a set of generic errors upon which generic
    /// code can act.
    fn kind(&self) -> ErrorKind;
}

impl Error for core::convert::Infallible {
    fn kind(&self) -> ErrorKind {
        match *self {}
    }
}

/// Error kind
///
/// This represents a common set of operation errors. HAL implementations are
/// free to define more specific or additional error types. However, by providing
/// a mapping to these common errors, generic code can still react to them.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[non_exhaustive]
pub enum ErrorKind {
    /// A different error occurred. The original error may contain more information.
    Other,
}

impl Error for ErrorKind {
    fn kind(&self) -> ErrorKind {
        *self
    }
}

impl core::fmt::Display for ErrorKind {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::Other => write!(
                f,
                "A different error occurred. The original error may contain more information"
            ),
        }
    }
}

/// Error type trait
///
/// This just defines the error type, to be used by the other traits.
pub trait ErrorType {
    /// Error type
    type Error: Error;
}

impl<T: ErrorType> ErrorType for &T {
    type Error = T::Error;
}

impl<T: ErrorType> ErrorType for &mut T {
    type Error = T::Error;
}

/// Digital output pin state
///
/// Conversion from `bool` and logical negation are also implemented
/// for this type.
/// ```rust
/// # use embedded_hal::digital::PinState;
/// let state = PinState::from(false);
/// assert_eq!(state, PinState::Low);
/// assert_eq!(!state, PinState::High);
/// ```
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum PinState {
    /// Low pin state
    Low,
    /// High pin state
    High,
}

impl From<bool> for PinState {
    #[inline]
    fn from(value: bool) -> Self {
        match value {
            false => PinState::Low,
            true => PinState::High,
        }
    }
}

impl Not for PinState {
    type Output = PinState;

    #[inline]
    fn not(self) -> Self::Output {
        match self {
            PinState::High => PinState::Low,
            PinState::Low => PinState::High,
        }
    }
}

impl From<PinState> for bool {
    #[inline]
    fn from(value: PinState) -> bool {
        match value {
            PinState::Low => false,
            PinState::High => true,
        }
    }
}

/// Single digital push-pull output pin
pub trait OutputPin: ErrorType {
    /// Drives the pin low
    ///
    /// *NOTE* the actual electrical state of the pin may not actually be low, e.g. due to external
    /// electrical sources
    fn set_low(&mut self) -> Result<(), Self::Error>;

    /// Drives the pin high
    ///
    /// *NOTE* the actual electrical state of the pin may not actually be high, e.g. due to external
    /// electrical sources
    fn set_high(&mut self) -> Result<(), Self::Error>;

    /// Drives the pin high or low depending on the provided value
    ///
    /// *NOTE* the actual electrical state of the pin may not actually be high or low, e.g. due to external
    /// electrical sources
    fn set_state(&mut self, state: PinState) -> Result<(), Self::Error> {
        match state {
            PinState::Low => self.set_low(),
            PinState::High => self.set_high(),
        }
    }
}

impl<T: OutputPin> OutputPin for &mut T {
    fn set_low(&mut self) -> Result<(), Self::Error> {
        T::set_low(self)
    }

    fn set_high(&mut self) -> Result<(), Self::Error> {
        T::set_high(self)
    }

    fn set_state(&mut self, state: PinState) -> Result<(), Self::Error> {
        T::set_state(self, state)
    }
}

/// Push-pull output pin that can read its output state
pub trait StatefulOutputPin: OutputPin {
    /// Is the pin in drive high mode?
    ///
    /// *NOTE* this does *not* read the electrical state of the pin
    fn is_set_high(&self) -> Result<bool, Self::Error>;

    /// Is the pin in drive low mode?
    ///
    /// *NOTE* this does *not* read the electrical state of the pin
    fn is_set_low(&self) -> Result<bool, Self::Error>;
}

impl<T: StatefulOutputPin> StatefulOutputPin for &mut T {
    fn is_set_high(&self) -> Result<bool, Self::Error> {
        T::is_set_high(self)
    }

    fn is_set_low(&self) -> Result<bool, Self::Error> {
        T::is_set_low(self)
    }
}

/// Output pin that can be toggled
pub trait ToggleableOutputPin: ErrorType {
    /// Toggle pin output.
    fn toggle(&mut self) -> Result<(), Self::Error>;
}

impl<T: ToggleableOutputPin> ToggleableOutputPin for &mut T {
    fn toggle(&mut self) -> Result<(), Self::Error> {
        T::toggle(self)
    }
}

/// Single digital input pin
pub trait InputPin: ErrorType {
    /// Is the input pin high?
    fn is_high(&self) -> Result<bool, Self::Error>;

    /// Is the input pin low?
    fn is_low(&self) -> Result<bool, Self::Error>;
}

impl<T: InputPin> InputPin for &T {
    fn is_high(&self) -> Result<bool, Self::Error> {
        T::is_high(self)
    }

    fn is_low(&self) -> Result<bool, Self::Error> {
        T::is_low(self)
    }
}