1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
use crate::fastr::FaStr;
use crate::{Word, WordFunc};
use core::{
alloc::{Layout, LayoutError},
marker::PhantomData,
mem::{self, MaybeUninit},
ops::{Deref, DerefMut},
ptr::{self, addr_of_mut, NonNull},
};
use portable_atomic::{AtomicUsize, Ordering::*};
#[derive(Debug, PartialEq)]
pub enum BumpError {
OutOfMemory,
CantAllocUtf8,
}
#[derive(Debug, Clone, Copy)]
#[repr(u16)]
#[non_exhaustive]
pub enum EntryKind {
StaticBuiltin,
RuntimeBuiltin,
Dictionary,
#[cfg(feature = "async")]
AsyncBuiltin,
}
/// Where a dictionary entry was found
pub enum DictLocation<T: 'static> {
/// The entry was found in the current (mutable) dictionary.
Parent(NonNull<DictionaryEntry<T>>),
/// The entry was found in a parent (frozen) dictionary.
Current(NonNull<DictionaryEntry<T>>),
}
#[repr(C)]
pub struct EntryHeader<T: 'static> {
pub name: FaStr,
pub kind: EntryKind, // todo
pub len: u16,
pub _pd: PhantomData<T>,
}
#[repr(C)]
pub struct BuiltinEntry<T: 'static> {
pub hdr: EntryHeader<T>,
pub func: WordFunc<T>,
}
/// A dictionary entry for an asynchronous builtin word.
///
/// This type is typically created using the [`async_builtin!`
/// macro](crate::async_builtin), and is used with the
/// [`AsyncForth`](crate::AsyncForth) VM type only. See the [documentation for
/// `AsyncForth`](crate::AsyncForth) for details on using asynchronous builtin
/// words.
#[repr(C)]
#[cfg(feature = "async")]
pub struct AsyncBuiltinEntry<T: 'static> {
pub hdr: EntryHeader<T>,
}
// Starting FORTH: page 220
#[repr(C)]
pub struct DictionaryEntry<T: 'static> {
pub hdr: EntryHeader<T>,
pub func: WordFunc<T>,
/// Link field, points back to the previous entry
pub(crate) link: Option<NonNull<DictionaryEntry<T>>>,
/// data OR an array of compiled code.
/// the first word is the "p(arameter)fa" or "c(ode)fa"
pub(crate) parameter_field: [Word; 0],
}
/// A handle to an owned, mutable dictionary allocation.
pub struct OwnedDict<T: 'static>(NonNull<Dictionary<T>>);
/// A handle to a shared, atomically reference counted dictionary allocation.
///
/// The contents of this dictionary are frozen and can no longer be mutated.
/// However, a `SharedDict` can be inexpensively cloned by incrementing its
/// reference count.
///
/// When a VM is forked into a child VM, its current [`OwnedDict`] is
/// transformed into a `SharedDict`, which both its new `OwnedDict` and the
/// child VM's `OwnedDict` will reference as their parents.
pub(crate) struct SharedDict<T: 'static>(NonNull<Dictionary<T>>);
pub struct Dictionary<T: 'static> {
pub(crate) tail: Option<NonNull<DictionaryEntry<T>>>,
pub(crate) alloc: DictionaryBump,
/// Reference count, used to determine when the dictionary can be dropped.
/// If this is `usize::MAX`, the dictionary is mutable.
refs: portable_atomic::AtomicUsize,
/// Parent dictionary.
///
/// When looking up a binding that isn't present in `self`, we traverse this
/// chain of references. When dropping the dictionary, we decrement the
/// parent's ref count.
parent: Option<SharedDict<T>>,
deallocate: unsafe fn(ptr: NonNull<u8>, layout: Layout),
}
pub trait DropDict {
/// Deallocate a dictionary.
unsafe fn drop_dict(ptr: NonNull<u8>, layout: Layout);
}
pub(crate) struct EntryBuilder<'dict, T: 'static> {
dict: &'dict mut Dictionary<T>,
len: u16,
base: NonNull<DictionaryEntry<T>>,
kind: EntryKind,
}
pub(crate) struct DictionaryBump {
pub(crate) start: *mut u8,
pub(crate) cur: *mut u8,
pub(crate) end: *mut u8,
}
/// Iterator over a [`Dictionary`]'s entries.
pub(crate) struct Entries<'dict, T: 'static> {
next: Option<NonNull<DictionaryEntry<T>>>,
dict: CurrDict<'dict, T>,
}
enum CurrDict<'dict, T: 'static> {
Leaf(&'dict Dictionary<T>),
Parent(SharedDict<T>),
}
#[cfg(feature = "async")]
/// A set of asynchronous builtin words, and a method to dispatch builtin names
/// to [`Future`]s.
///
/// This trait is used along with the [`AsyncForth`] type to
/// allow some builtin words to be implemented by `async fn`s (or [`Future`]s),
/// rather than synchronous functions. See [here][async-vms] for an overview of
/// how asynchronous Forth VMs work.
///
/// # Implementing Async Builtins
///
/// Synchronous builtins are provided to the Forth VM as a static slice of
/// [`BuiltinEntry`]s. These entries allow the VM to lookup builtin words by
/// name, and also contain a function pointer to the host function that
/// implements that builtin. Asynchronous builtins work somewhat differently: a
/// slice of [`AsyncBuiltinEntry`]s is still used in order to define the names
/// of the asynchronous builtin words, but because asynchronous functions return
/// a [`Future`] whose type must be known, an [`AsyncBuiltinEntry`] does *not*
/// contain a function pointer to a host function. Instead, once the name of an
/// async builtin is looked up, it is passed to the
/// [`AsyncBuiltins::dispatch_async`] method, which returns the [`Future`]
/// corresponding to that builtin function.
///
/// This indirection allows the `AsyncBuiltins` trait to erase the various
/// [`Future`] types which are returned by the async builtin functions, allowing
/// the [`AsyncForth`] VM to have only a single additional generic parameter for
/// the `AsyncBuiltins` implementation itself. Without the indirection of
/// [`dispatch_async`], the [`AsyncForth`] VM would need to be generic over
/// *every* possible [`Future`] type that may be returned by an async builtin
/// word, which would be impractical.[^1]
///
/// In order to erase multiple [`Future`] types, one of several approaches may
/// be used:
///
/// - The [`Future`] returned by [`dispatch_async`] can be an [`enum`] of each
/// builtin word's [`Future`] type. This requires all builtin words to be
/// implemented as named [`Future`] types, rather than [`async fn`]s, but
/// does not require heap allocation or unstable Rust features.
/// - The [`Future`] type can be a `Pin<Box<dyn Future<Output = Result<(),
/// Error>> + 'forth>`. This requires heap allocation, but can erase the type
/// of any number of async builtin futures, which may be [`async fn`]s _or_
/// named [`Future`] types.
/// - If using nightly Rust, the
/// [`#![feature(impl_trait_in_assoc_type)]`][63063] unstable feature can be
/// enabled, allowing the [`AsyncBuiltins::Future`] associated type to be
/// `impl Future<Output = Result(), Error> + 'forth`. This does not require
/// heap allocation, and allows the [`dispatch_async`] method to return an
/// [`async`] block [`Future`] which [`match`]es on the builtin's name and
/// calls any number of [`async fn`]s or named [`Future`] types. This is the
/// preferred approach when nightly features may be used.
///
/// Since the [`AsyncBuiltins`] trait is generic over the lifetime for which the
/// [`Forth`] vm is borrowed mutably, the [`AsyncBuiltins::Future`] associated
/// type may also be generic over that lifetime. This allows the returned
/// [`Future`] to borrow the [`Forth`] VM so that its stacks can be mutated
/// while the builtin [`Future`] executes (e.g. the result of the asynchronous
/// operation can be pushed to the VM's `data` stack, et cetera).
///
/// [^1]: If the [`AsyncForth`] type was generic over every possible async
/// builtin future, it would have a large number of generic type parameters
/// which would all need to be filled in by the user. Additionally, because
/// Rust does not allow a type to have a variadic number of generic
/// parameters, there would have to be an arbitrary limit on the maximum
/// number of async builtin words.
///
/// [`AsyncForth`]: crate::AsyncForth
/// [`Future`]: core::future::Future
/// [async-vms]: crate::AsyncForth#asynchronous-forth-vms
/// [`async fn`]: https://doc.rust-lang.org/stable/std/keyword.async.html
/// [`async`]: https://doc.rust-lang.org/stable/std/keyword.async.html
/// [`dispatch_async`]: Self::dispatch_async
/// [`enum`]: https://doc.rust-lang.org/stable/std/keyword.enum.html
/// [`match`]: https://doc.rust-lang.org/stable/std/keyword.match.html
/// [`Forth`]: crate::Forth
/// [63063]: https://github.com/rust-lang/rust/issues/63063
pub trait AsyncBuiltins<'forth, T: 'static> {
/// The [`Future`] type returned by [`Self::dispatch_async`].
///
/// Since the `AsyncBuiltins` trait is generic over the lifetime of the
/// [`Forth`](crate::Forth) VM, the [`Future`] type may mutably borrow the
/// VM. This allows the VM's stacks to be mutated by the async builtin function.
///
/// [`Future`]: core::future::Future
type Future: core::future::Future<Output = Result<(), crate::Error>>;
/// A static slice of [`AsyncBuiltinEntry`]s describing the builtins
/// provided by this implementation of `AsyncBuiltin`s.
///
/// [`AsyncBuiltinEntry`]s may be created using the
/// [`async_builtin!`](crate::async_builtin) macro.
const BUILTINS: &'static [AsyncBuiltinEntry<T>];
/// Dispatch a builtin name (`id`) to an asynchronous builtin [`Future`].
///
/// The returned [`Future`] may borrow the [`Forth`](crate::Forth) VM
/// provided as an argument to this function, allowing it to mutate the VM's
/// stacks as it executes.
///
/// This method should return a [`Future`] for each builtin function
/// definition in [`Self::BUILTINS`]. Typically, this is implemented by
/// [`match`]ing the provided `id`, and returning the appropriate [`Future`]
/// for each builtin name. See [the `AsyncBuiltin` trait's
/// documentation][impling] for details on implementing this method.
///
/// The `id` parameter is `'static`, as we will only resolve function names
/// from the provided [`Self::BUILTINS`], which must be `'static`.
///
/// [`Future`]: core::future::Future
/// [`match`]: https://doc.rust-lang.org/stable/std/keyword.match.html
/// [impling]: #implementing-async-builtins
fn dispatch_async(
&self,
id: &'static FaStr,
forth: &'forth mut crate::Forth<T>,
) -> Self::Future;
}
impl<T: 'static> DictionaryEntry<T> {
pub unsafe fn pfa(this: NonNull<Self>) -> NonNull<Word> {
let ptr = this.as_ptr();
let pfp: *mut [Word; 0] = addr_of_mut!((*ptr).parameter_field);
NonNull::new_unchecked(pfp.cast::<Word>())
}
}
impl<T: 'static> Dictionary<T> {
const MUTABLE: usize = usize::MAX;
/// Returns the [`Layout`] that must be allocated for a `Dictionary` of the
/// given `size`.
pub fn layout(size: usize) -> Result<Layout, LayoutError> {
let (layout, _) = Layout::new::<Self>().extend(Layout::array::<u8>(size)?)?;
Ok(layout.pad_to_align())
}
pub(crate) fn add_bi_fastr(&mut self, name: FaStr, bi: WordFunc<T>) -> Result<(), BumpError> {
debug_assert_eq!(self.refs.load(Acquire), Self::MUTABLE);
// Allocate and initialize the dictionary entry
let dict_base = self.alloc.bump::<DictionaryEntry<T>>()?;
unsafe {
dict_base.as_ptr().write(DictionaryEntry {
hdr: EntryHeader {
name,
kind: EntryKind::RuntimeBuiltin,
len: 0,
_pd: PhantomData,
},
func: bi,
link: self.tail.take(),
parameter_field: [],
});
}
self.tail = Some(dict_base);
Ok(())
}
pub(crate) fn build_entry(&mut self) -> Result<EntryBuilder<'_, T>, BumpError> {
let base = self.alloc.bump::<DictionaryEntry<T>>()?;
Ok(EntryBuilder {
base,
len: 0,
dict: self,
kind: EntryKind::Dictionary,
})
}
pub(crate) fn entries(&self) -> Entries<'_, T> {
Entries {
next: self.tail,
dict: CurrDict::Leaf(self),
}
}
}
// === SharedDict ===
impl<T: 'static> SharedDict<T> {
const MAX_REFCOUNT: usize = Dictionary::<T>::MUTABLE - 1;
// Non-inlined part of `drop`.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
unsafe {
let dealloc = self.deallocate;
let layout = Dictionary::<T>::layout(self.alloc.capacity()).unwrap();
ptr::drop_in_place(self.0.as_ptr());
(dealloc)(self.0.cast(), layout);
}
}
}
impl<T: 'static> Deref for SharedDict<T> {
type Target = Dictionary<T>;
fn deref(&self) -> &Self::Target {
unsafe { self.0.as_ref() }
}
}
impl<T: 'static> Clone for SharedDict<T> {
#[inline]
fn clone(&self) -> Self {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.refs.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone is `mem::forget`ing
// `SharedDict`s. If we don't do this the count can overflow and users will use-after free. This
// branch will never be taken in any realistic program. We abort because such a program is
// incredibly degenerate, and we don't care to support it.
//
// This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
// But we do that check *after* having done the increment, so there is a chance here that
// the worst already happened and we actually do overflow the `usize` counter. However, that
// requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
// above and the `abort` below, which seems exceedingly unlikely.
if old_size == Self::MAX_REFCOUNT {
unreachable!("bad news")
}
Self(self.0)
}
}
impl<T: 'static> Drop for SharedDict<T> {
#[inline]
fn drop(&mut self) {
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object. This
// same logic applies to the below `fetch_sub` to the `weak` count.
if self.refs.fetch_sub(1, Release) != 1 {
return;
}
// This fence is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` fence. This
// means that use of the data happens before decreasing the reference
// count, which happens before this fence, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// In particular, while the contents of an Arc are usually immutable, it's
// possible to have interior writes to something like a Mutex<T>. Since a
// Mutex is not acquired when it is deleted, we can't rely on its
// synchronization logic to make writes in thread A visible to a destructor
// running in thread B.
//
// Also note that the Acquire fence here could probably be replaced with an
// Acquire load, which could improve performance in highly-contended
// situations. See [2].
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: (https://github.com/rust-lang/rust/pull/41714)
portable_atomic::fence(Acquire);
unsafe {
self.drop_slow();
}
}
}
// === OwnedDict ===
impl<T: 'static> OwnedDict<T> {
pub fn new<D: DropDict>(dict: NonNull<MaybeUninit<Dictionary<T>>>, size: usize) -> Self {
// A helper type to provide proper layout generation for initialization
#[repr(C)]
struct DictionaryInner<T: 'static> {
pub(crate) header: Dictionary<T>,
bytes: [MaybeUninit<u8>; 0],
}
let ptr = dict.as_ptr().cast::<DictionaryInner<T>>();
unsafe {
let bump_base = addr_of_mut!((*ptr).bytes)
// TODO(eliza): don't ignore the `MaybeUninit`ness of the bump region...
.cast::<u8>();
// Initialize the header, using `write` instead of assignment via
// `=` to not call `drop` on the old, uninitialized value.
addr_of_mut!((*ptr).header).write(Dictionary {
tail: None,
refs: AtomicUsize::new(Dictionary::<T>::MUTABLE),
parent: None,
alloc: DictionaryBump::new(bump_base, size),
deallocate: D::drop_dict,
});
}
Self(dict.cast::<Dictionary<T>>())
}
fn into_shared(self) -> SharedDict<T> {
// don't let the destructor run, as it will deallocate the dictionary.
let this = mem::ManuallyDrop::new(self);
this.refs
.compare_exchange(Dictionary::<T>::MUTABLE, 1, AcqRel, Acquire)
.expect("dictionary must have been mutable");
SharedDict(this.0)
}
/// We swap `self` to the new, empty OwnedDict, and turn the old `self`
/// into a SharedDict, both as the parent of our new self, as well as
/// returning it for other use.
pub(crate) fn fork_onto(&mut self, new: OwnedDict<T>) -> SharedDict<T> {
let this = mem::replace(self, new).into_shared();
self.set_parent(this.clone());
this
}
pub(crate) fn set_parent(&mut self, parent: SharedDict<T>) {
let _prev = self.parent.replace(parent);
debug_assert!(_prev.is_none(), "parent dictionary shouldn't be clobbered!");
}
}
impl<T: 'static> Deref for OwnedDict<T> {
type Target = Dictionary<T>;
fn deref(&self) -> &Self::Target {
unsafe { self.0.as_ref() }
}
}
impl<T: 'static> DerefMut for OwnedDict<T> {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
debug_assert_eq!(self.0.as_ref().refs.load(Acquire), Dictionary::<T>::MUTABLE);
self.0.as_mut()
}
}
}
impl<T: 'static> Drop for OwnedDict<T> {
fn drop(&mut self) {
unsafe {
let dealloc = self.deallocate;
let layout = Dictionary::<T>::layout(self.alloc.capacity()).unwrap();
ptr::drop_in_place(self.0.as_ptr());
(dealloc)(self.0.cast(), layout);
}
}
}
// === EntryBuilder ===
impl<T> EntryBuilder<'_, T> {
pub(crate) fn write_word(mut self, word: Word) -> Result<Self, BumpError> {
self.dict.alloc.bump_write(word)?;
self.len += 1;
Ok(self)
}
pub(crate) fn kind(self, kind: EntryKind) -> Self {
Self { kind, ..self }
}
pub(crate) fn finish(self, name: FaStr, func: WordFunc<T>) -> NonNull<DictionaryEntry<T>> {
unsafe {
self.base.as_ptr().write(DictionaryEntry {
hdr: EntryHeader {
name,
kind: self.kind,
len: self.len,
_pd: PhantomData,
},
// TODO: Should arrays push length and ptr? Or just ptr?
//
// TODO: Should we look up `(variable)` for consistency?
// Use `find_word`?
func,
// Don't link until we know we have a "good" entry!
link: self.dict.tail.take(),
parameter_field: [],
});
}
self.dict.tail = Some(self.base);
self.base
}
}
// === impl Entries ===
impl<'dict, T: 'static> Iterator for Entries<'dict, T> {
type Item = DictLocation<T>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
loop {
let entry = match self.next.take() {
Some(entry) => entry,
None => {
// try to traverse the parent link
if let Some(parent) = self.dict.dict().parent.clone() {
self.next = parent.tail;
self.dict = CurrDict::Parent(parent);
continue;
} else {
return None;
}
}
};
self.next = unsafe {
// Safety: `self.next` must be a pointer into the VM's dictionary
// entries. The caller who constructs a `Entries` iterator is
// responsible for ensuring this.
entry.as_ref().link
};
let found = match self.dict {
CurrDict::Leaf(_) => DictLocation::Current(entry),
CurrDict::Parent(_) => DictLocation::Parent(entry),
};
return Some(found);
}
}
}
impl<T> CurrDict<'_, T> {
fn dict(&self) -> &'_ Dictionary<T> {
match self {
Self::Leaf(dict) => dict,
Self::Parent(parent) => parent,
}
}
}
impl DictionaryBump {
pub fn new(bottom: *mut u8, size: usize) -> Self {
let end = bottom.wrapping_add(size);
debug_assert!(end >= bottom);
Self {
end,
start: bottom,
cur: bottom,
}
}
pub fn bump_str(&mut self, s: &str) -> Result<FaStr, BumpError> {
debug_assert!(!s.is_empty());
let len = s.len().min(31);
let astr = &s.as_bytes()[..len];
if !astr.iter().all(|b| b.is_ascii()) {
return Err(BumpError::CantAllocUtf8);
}
let stir = self.bump_u8s(len).ok_or(BumpError::OutOfMemory)?.as_ptr();
for (i, ch) in astr.iter().enumerate() {
unsafe {
stir.add(i).write(ch.to_ascii_lowercase());
}
}
unsafe { Ok(FaStr::new(stir, len)) }
}
pub fn bump_u8s(&mut self, n: usize) -> Option<NonNull<u8>> {
if n == 0 {
return None;
}
let req = self.cur.wrapping_add(n);
if req > self.end {
None
} else {
let ptr = self.cur;
self.cur = req;
Some(unsafe { NonNull::new_unchecked(ptr) })
}
}
#[allow(dead_code)]
pub fn bump_u8(&mut self) -> Option<NonNull<u8>> {
if self.cur >= self.end {
None
} else {
let ptr = self.cur;
self.cur = self.cur.wrapping_add(1);
Some(unsafe { NonNull::new_unchecked(ptr) })
}
}
pub fn bump<T: Sized>(&mut self) -> Result<NonNull<T>, BumpError> {
let offset = self.cur.align_offset(Layout::new::<T>().align());
// Zero out any padding bytes!
unsafe {
self.cur.write_bytes(0x00, offset);
}
let align_cur = self.cur.wrapping_add(offset);
let new_cur = align_cur.wrapping_add(Layout::new::<T>().size());
if new_cur > self.end {
Err(BumpError::OutOfMemory)
} else {
self.cur = new_cur;
Ok(unsafe { NonNull::new_unchecked(align_cur.cast()) })
}
}
pub fn bump_write<T: Sized>(&mut self, val: T) -> Result<(), BumpError> {
let nnt = self.bump::<T>()?;
unsafe {
nnt.as_ptr().write(val);
}
Ok(())
}
/// Is the given pointer within the dictionary range?
pub fn contains(&self, ptr: *mut ()) -> bool {
let pau = ptr as usize;
let sau = self.start as usize;
let eau = self.end as usize;
(pau >= sau) && (pau < eau)
}
pub fn capacity(&self) -> usize {
(self.end as usize) - (self.start as usize)
}
pub fn used(&self) -> usize {
(self.cur as usize) - (self.start as usize)
}
}
impl<T: 'static> DictLocation<T> {
pub(crate) fn entry(&self) -> NonNull<DictionaryEntry<T>> {
match self {
Self::Current(entry) => *entry,
Self::Parent(entry) => *entry,
}
}
}
#[cfg(test)]
pub mod test {
use core::{mem::size_of, sync::atomic::Ordering};
use std::alloc::Layout;
use crate::{
dictionary::{BuiltinEntry, DictLocation, DictionaryBump, DictionaryEntry},
leakbox::{alloc_dict, LeakBox, LeakBoxDict},
Error, Forth, Word,
};
#[cfg(feature = "async")]
use super::AsyncBuiltinEntry;
use super::{EntryHeader, OwnedDict};
#[test]
fn sizes() {
assert_eq!(size_of::<EntryHeader<()>>(), 3 * size_of::<usize>());
assert_eq!(size_of::<BuiltinEntry<()>>(), 4 * size_of::<usize>());
#[cfg(feature = "async")]
assert_eq!(size_of::<AsyncBuiltinEntry<()>>(), 3 * size_of::<usize>());
}
#[test]
fn do_a_bump() {
let payload: LeakBox<u8> = LeakBox::new(256);
let mut bump = DictionaryBump::new(payload.ptr(), payload.len());
// Be annoying
let _b = bump.bump_u8().unwrap();
// ALLOT 10
let d = bump.bump::<DictionaryEntry<()>>().unwrap();
assert_eq!(
d.as_ptr()
.align_offset(Layout::new::<DictionaryEntry<()>>().align()),
0
);
let walign = Layout::new::<DictionaryEntry<()>>().align();
for _w in 0..10 {
let w = bump.bump::<Word>().unwrap();
assert_eq!(w.as_ptr().align_offset(walign), 0);
}
}
// This test just checks that we can properly allocate and deallocate an OwnedDict
//
// Intended to be run with miri or valgrind where leaks are made apparent
#[test]
fn just_one_dict() {
let buf: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(512);
assert_eq!(buf.refs.load(Ordering::Relaxed), usize::MAX);
}
// This test just checks that we can properly allocate and deallocate a chain of dicts
//
// Intended to be run with miri or valgrind where leaks are made apparent
#[test]
fn nested_dicts() {
let buf_1: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(512);
let mut buf_2: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(256);
let buf_1 = buf_1.into_shared();
buf_2.parent = Some(buf_1);
}
// Similar to above, but making sure refcounting works properly
#[test]
fn shared_dicts() {
let buf_1: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(512);
let mut buf_2: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(256);
let mut buf_3: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(128);
let buf_1 = buf_1.into_shared();
assert_eq!(buf_1.refs.load(Ordering::Relaxed), 1);
buf_2.parent = Some(buf_1.clone());
assert_eq!(buf_1.refs.load(Ordering::Relaxed), 2);
buf_3.parent = Some(buf_1.clone());
assert_eq!(buf_1.refs.load(Ordering::Relaxed), 3);
drop(buf_2);
assert_eq!(buf_1.refs.load(Ordering::Relaxed), 2);
drop(buf_3);
assert_eq!(buf_1.refs.load(Ordering::Relaxed), 1);
}
#[test]
fn allocs_work() {
fn stubby(_f: &mut Forth<()>) -> Result<(), Error> {
panic!("Don't ACTUALLY call me!");
}
let mut buf: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(512);
assert!(buf.tail.is_none());
let strname = buf.alloc.bump_str("stubby").unwrap();
buf.add_bi_fastr(strname, stubby).unwrap();
assert_eq!(
unsafe { buf.tail.as_ref().unwrap().as_ref().hdr.name.as_str() },
"stubby"
);
}
#[test]
fn fork_onto_works() {
fn stubby(_f: &mut Forth<()>) -> Result<(), Error> {
panic!("Don't ACTUALLY call me!");
}
// Put a builtin into the first slab
let mut buf_1: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(512);
let strname = buf_1.alloc.bump_str("stubby").unwrap();
buf_1.add_bi_fastr(strname, stubby).unwrap();
// Make a new dict slab, which "becomes" the mutable tip, with the original
// slab as the parent of the new mutable tip
let buf_2: OwnedDict<()> = alloc_dict::<(), LeakBoxDict>(512);
let buf_1_ro = buf_1.fork_onto(buf_2);
// Find the builtin in the original slab, it should say "current" here
let ro_find = buf_1_ro
.entries()
.find(|e| unsafe { e.entry().as_ref() }.hdr.name.as_str() == "stubby")
.unwrap();
assert!(matches!(ro_find, DictLocation::Current(_)));
// Now find the builtin in the new mutable slab, it should say "parent" here
let rw_find = buf_1
.entries()
.find(|e| unsafe { e.entry().as_ref() }.hdr.name.as_str() == "stubby")
.unwrap();
assert!(matches!(rw_find, DictLocation::Parent(_)));
}
}