1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
use core::{
    mem::size_of,
    num::NonZeroU16,
    ops::{Deref, Neg},
    ptr::NonNull,
    str::FromStr,
};

use crate::{
    dictionary::{
        BuiltinEntry, BumpError, DictLocation, DictionaryEntry, EntryHeader, EntryKind, OwnedDict,
    },
    fastr::{FaStr, TmpFaStr},
    input::WordStrBuf,
    output::OutputBuf,
    stack::{Stack, StackError},
    word::Word,
    CallContext, Error, Lookup, Mode, ReplaceErr, WordFunc,
};

#[cfg(feature = "async")]
use crate::dictionary::{AsyncBuiltinEntry, AsyncBuiltins};

pub mod builtins;

#[cfg(feature = "async")]
mod async_vm;

#[cfg(feature = "async")]
pub use self::async_vm::AsyncForth;

/// Forth is the "context" of the VM/interpreter.
pub struct Forth<T: 'static> {
    mode: Mode,
    pub data_stack: Stack<Word>,
    pub(crate) return_stack: Stack<Word>,
    pub(crate) call_stack: Stack<CallContext<T>>,
    pub(crate) dict: OwnedDict<T>,
    pub input: WordStrBuf,
    pub output: OutputBuf,
    pub host_ctxt: T,
    builtins: &'static [BuiltinEntry<T>],
    #[cfg(feature = "async")]
    async_builtins: &'static [AsyncBuiltinEntry<T>],
}

enum ProcessAction {
    Continue,
    Execute,
    Done,
}

#[derive(Copy, Clone, Eq, PartialEq)]
enum Step {
    Done,
    NotDone,
}

/// Buffers provided to construct a new virtual machine.
pub struct Buffers<T: 'static> {
    pub dstack_buf: (*mut Word, usize),
    pub rstack_buf: (*mut Word, usize),
    pub cstack_buf: (*mut CallContext<T>, usize),
    pub input: WordStrBuf,
    pub output: OutputBuf,
}

impl<T> Forth<T> {
    pub unsafe fn new(
        bufs: Buffers<T>,
        dict: OwnedDict<T>,
        host_ctxt: T,
        builtins: &'static [BuiltinEntry<T>],
    ) -> Result<Self, Error> {
        let Buffers {
            dstack_buf,
            rstack_buf,
            cstack_buf,
            input,
            output,
        } = bufs;
        let data_stack = Stack::new(dstack_buf.0, dstack_buf.1);
        let return_stack = Stack::new(rstack_buf.0, rstack_buf.1);
        let call_stack = Stack::new(cstack_buf.0, cstack_buf.1);

        Ok(Self {
            mode: Mode::Run,
            data_stack,
            return_stack,
            call_stack,
            dict,
            input,
            output,
            host_ctxt,
            builtins,

            #[cfg(feature = "async")]
            async_builtins: &[],
        })
    }

    /// Pushes a task to the back of the local queue, skipping the LIFO
    /// slot, and overflowing onto the injection queue if the local
    /// queue is full.
    #[cfg(feature = "async")]
    unsafe fn new_async(
        bufs: Buffers<T>,
        dict: OwnedDict<T>,
        host_ctxt: T,
        builtins: &'static [BuiltinEntry<T>],
        async_builtins: &'static [AsyncBuiltinEntry<T>],
    ) -> Result<Self, Error> {
        let Buffers {
            dstack_buf,
            rstack_buf,
            cstack_buf,
            input,
            output,
        } = bufs;
        let data_stack = Stack::new(dstack_buf.0, dstack_buf.1);
        let return_stack = Stack::new(rstack_buf.0, rstack_buf.1);
        let call_stack = Stack::new(cstack_buf.0, cstack_buf.1);

        Ok(Self {
            mode: Mode::Run,
            data_stack,
            return_stack,
            call_stack,
            dict,
            input,
            output,
            host_ctxt,
            builtins,
            async_builtins,
        })
    }

    /// Constructs a new VM whose dictionary is a fork of this VM's dictionary.
    ///
    /// The current dictionary owned by this VM is frozen (made immutable), and
    /// a reference to it is shared with this VM and the new child VM. When both
    /// this VM and the child are dropped, the frozen dictionary is deallocated.
    ///
    /// This function takes two [`OwnedDict`]s as arguments: `new_dict` is the
    /// dictionary allocation for the forked child VM, while `my_dict` is a new
    /// allocation for this VM's mutable dictionary (which replaces the current
    /// dictionary, as it will become frozen).
    ///
    /// The child VM is created with empty stacks, and the provided input and
    /// output buffers.
    ///
    /// # Safety
    ///
    /// This method requires the same invariants be upheld as [`Forth::new`].
    pub unsafe fn fork(
        &mut self,
        bufs: Buffers<T>,
        mut new_dict: OwnedDict<T>,
        my_dict: OwnedDict<T>,
        host_ctxt: T,
    ) -> Result<Self, Error> {
        let shared_dict = self.dict.fork_onto(my_dict);
        new_dict.set_parent(shared_dict);
        Self::new(bufs, new_dict, host_ctxt, self.builtins)
    }

    pub fn add_builtin_static_name(
        &mut self,
        name: &'static str,
        bi: WordFunc<T>,
    ) -> Result<(), Error> {
        let name = unsafe { FaStr::new(name.as_ptr(), name.len()) };
        self.dict.add_bi_fastr(name, bi)?;
        Ok(())
    }

    pub fn add_builtin(&mut self, name: &str, bi: WordFunc<T>) -> Result<(), Error> {
        let name = self.dict.alloc.bump_str(name)?;
        self.dict.add_bi_fastr(name, bi)?;
        Ok(())
    }

    fn parse_num(word: &str) -> Option<i32> {
        i32::from_str(word).ok()
    }

    fn find_word(&self, word: &str) -> Option<NonNull<EntryHeader<T>>> {
        let fastr = TmpFaStr::new_from(word);
        self.find_in_dict(&fastr)
            .map(|entry| match entry {
                DictLocation::Current(entry) => entry.cast(),
                DictLocation::Parent(entry) => entry.cast(),
            })
            .or_else(|| self.find_in_bis(&fastr).map(NonNull::cast))
    }

    #[cfg(feature = "async")]
    fn find_in_async_bis(&self, fastr: &TmpFaStr<'_>) -> Option<NonNull<AsyncBuiltinEntry<T>>> {
        self.async_builtins
            .iter()
            .find(|bi| &bi.hdr.name == fastr.deref())
            .map(NonNull::from)
    }

    fn find_in_bis(&self, fastr: &TmpFaStr<'_>) -> Option<NonNull<BuiltinEntry<T>>> {
        self.builtins
            .iter()
            .find(|bi| &bi.hdr.name == fastr.deref())
            .map(NonNull::from)
    }

    fn find_in_dict(&self, fastr: &TmpFaStr<'_>) -> Option<DictLocation<T>> {
        self.dict
            .entries()
            .find(|de| &unsafe { de.entry().as_ref() }.hdr.name == fastr.deref())
    }

    pub fn lookup(&self, word: &str) -> Result<Lookup<T>, Error> {
        match word {
            ";" => Ok(Lookup::Semicolon),
            "if" => Ok(Lookup::If),
            "else" => Ok(Lookup::Else),
            "then" => Ok(Lookup::Then),
            "do" => Ok(Lookup::Do),
            "loop" => Ok(Lookup::Loop),
            "(" => Ok(Lookup::LParen),
            "constant" => Ok(Lookup::Constant),
            "variable" => Ok(Lookup::Variable),
            "array" => Ok(Lookup::Array),
            r#".""# => Ok(Lookup::LQuote),
            _ => {
                let fastr = TmpFaStr::new_from(word);
                if let Some(entry) = self.find_in_dict(&fastr) {
                    return Ok(Lookup::Dict(entry));
                }
                if let Some(bis) = self.find_in_bis(&fastr) {
                    return Ok(Lookup::Builtin { bi: bis });
                }

                #[cfg(feature = "async")]
                if let Some(bi) = self.find_in_async_bis(&fastr) {
                    return Ok(Lookup::Async { bi });
                }

                if let Some(val) = Self::parse_num(word) {
                    return Ok(Lookup::Literal { val });
                }

                #[cfg(feature = "floats")]
                if let Ok(fv) = word.parse::<f32>() {
                    return Ok(Lookup::LiteralF { val: fv });
                }

                Err(Error::LookupFailed)
            }
        }
    }

    pub fn process_line(&mut self) -> Result<(), Error> {
        let res = (|| {
            loop {
                match self.start_processing_line()? {
                    ProcessAction::Done => {
                        self.output.push_str("ok.\n")?;
                        break Ok(());
                    }
                    ProcessAction::Continue => {}
                    ProcessAction::Execute =>
                    // Loop until execution completes.
                    {
                        while self.steppa_pig()? != Step::Done {}
                    }
                }
            }
        })();
        match res {
            Ok(_) => Ok(()),
            Err(e) => {
                self.data_stack.clear();
                self.return_stack.clear();
                self.call_stack.clear();
                Err(e)
            }
        }
    }

    /// Returns `true` if we must call `steppa_pig` until it returns `Ready`,
    /// false if not.
    fn start_processing_line(&mut self) -> Result<ProcessAction, Error> {
        self.input.advance();
        let word = match self.input.cur_word() {
            Some(w) => w,
            None => return Ok(ProcessAction::Done),
        };

        match self.lookup(word)? {
            // Found in the current dictionary, so call it.
            Lookup::Dict(DictLocation::Current(de)) => {
                let dref = unsafe { de.as_ref() };
                self.call_stack.push(CallContext {
                    eh: de.cast(),
                    idx: 0,
                    len: dref.hdr.len,
                })?;

                return Ok(ProcessAction::Execute);
            }
            // Found in a parent (frozen) dictionary. If this is a variable, we
            // may mutate it, so it must be copied into our dictionary.
            // TODO(eliza): we probably only need to do this when it's a
            // variable lookup?
            Lookup::Dict(DictLocation::Parent(de)) => {
                let dref = unsafe { de.as_ref() };
                let mut builder = self.dict.build_entry()?;
                unsafe {
                    let mut p = DictionaryEntry::pfa(de).as_ptr();
                    for _ in 0..dref.hdr.len {
                        builder = builder.write_word(p.read())?;
                        p = p.offset(1);
                    }
                }
                let name = unsafe {
                    // safety: a `FaStr` points to a string region stored in a
                    // dictionary. we can alias the name because our dictionary
                    // holds a reference to the parent dictionary, keeping it
                    // alive as long as our dictionary exists, and the new
                    // pointer will be in a value in our dictionary.
                    //
                    // IF IT WAS POSSIBLE FOR PARENTS TO BE DROPPED WHILE THEIR
                    // FORKS EXIST, THIS WOULD BE A DANGLING POINTER. IF YOU
                    // EVER CHANGE THE PARENT REFERENCE COUNTING RULES TO ALLOW
                    // PARENTS TO BE DEALLOCATED WHILE A CHILD EXISTS, YOU MUST
                    // CHANGE THIS TO DEEP COPY THE `FaStr` INTO THE CHILD
                    // DICT'S ARENA.
                    dref.hdr.name.copy_in_child()
                };
                let entry = builder.kind(dref.hdr.kind).finish(name, dref.func);
                self.call_stack.push(CallContext {
                    eh: entry.cast(),
                    idx: 0,
                    len: dref.hdr.len,
                })?;

                return Ok(ProcessAction::Execute);
            }
            Lookup::Builtin { bi } => {
                self.call_stack.push(CallContext {
                    eh: bi.cast(),
                    idx: 0,
                    len: 0,
                })?;

                return Ok(ProcessAction::Execute);
            }
            #[cfg(feature = "async")]
            Lookup::Async { bi } => {
                self.call_stack.push(CallContext {
                    eh: bi.cast(),
                    idx: 0,
                    len: 0,
                })?;

                return Ok(ProcessAction::Execute);
            }
            Lookup::Literal { val } => {
                self.data_stack.push(Word::data(val))?;
            }
            #[cfg(feature = "floats")]
            Lookup::LiteralF { val } => {
                self.data_stack.push(Word::float(val))?;
            }
            Lookup::LParen => {
                self.munch_comment(&mut 0)?;
            }
            Lookup::Semicolon => return Err(Error::InterpretingCompileOnlyWord),
            Lookup::If => return Err(Error::InterpretingCompileOnlyWord),
            Lookup::Else => return Err(Error::InterpretingCompileOnlyWord),
            Lookup::Then => return Err(Error::InterpretingCompileOnlyWord),
            Lookup::Do => return Err(Error::InterpretingCompileOnlyWord),
            Lookup::Loop => return Err(Error::InterpretingCompileOnlyWord),
            Lookup::LQuote => {
                self.input.advance_str().map_err(Error::BadStrLiteral)?;
                let lit = self.input.cur_str_literal().unwrap();
                self.output.push_str(lit)?;
            }
            Lookup::Constant => {
                self.munch_constant(&mut 0)?;
            }
            Lookup::Variable => {
                self.munch_variable(&mut 0)?;
            }
            Lookup::Array => {
                self.munch_array(&mut 0)?;
            }
        }

        Ok(ProcessAction::Continue)
    }

    // Single step execution
    fn steppa_pig(&mut self) -> Result<Step, Error> {
        let top = match self.call_stack.try_peek() {
            Ok(t) => t,
            Err(StackError::StackEmpty) => return Ok(Step::Done),
            Err(e) => return Err(Error::Stack(e)),
        };

        let kind = unsafe { top.eh.as_ref().kind };
        let res = unsafe {
            match kind {
                EntryKind::StaticBuiltin => (top.eh.cast::<BuiltinEntry<T>>().as_ref().func)(self),
                EntryKind::RuntimeBuiltin => (top.eh.cast::<BuiltinEntry<T>>().as_ref().func)(self),
                EntryKind::Dictionary => (top.eh.cast::<DictionaryEntry<T>>().as_ref().func)(self),

                #[cfg(feature = "async")]
                EntryKind::AsyncBuiltin => {
                    unreachable!(
                        "only an AsyncForth VM should have async builtins, and an \
                    AsyncForth VM should never perform a non-async execution \
                    step! this is a bug."
                    )
                }
            }
        };

        match res {
            Ok(_) => {
                let _ = self.call_stack.pop();
            }
            Err(Error::PendingCallAgain) => {
                // ok, just don't pop
            }
            Err(e) => return Err(e),
        }

        Ok(Step::NotDone)
    }

    /// Interpret is the run-time target of the `:` (colon) word.
    pub fn interpret(&mut self) -> Result<(), Error> {
        let mut top = self.call_stack.try_peek()?;

        if let Some(word) = top.get_word_at_cur_idx() {
            // Push the item in the list to the top of stack, will be executed on next step
            let ptr = unsafe { word.ptr.cast::<EntryHeader<T>>() };
            let nn = NonNull::new(ptr).ok_or(Error::NullPointerInCFA)?;
            let ehref = unsafe { nn.as_ref() };
            let callee = CallContext {
                eh: nn,
                idx: 0,
                len: ehref.len,
            };

            // Increment to the next item
            top.offset(1)?;
            self.call_stack.overwrite_back_n(0, top)?;

            // Then add the callee on top of the currently interpreted word
            self.call_stack.push(callee)?;

            Err(Error::PendingCallAgain)
        } else {
            Ok(())
        }
    }

    fn munch_do(&mut self, len: &mut u16) -> Result<u16, Error> {
        let pre_start = *len;
        // At the beginning of the loop, we want to place "the index of
        // the end of the loop" on the rstack, UNDER the loop variables.
        //
        // If someone calls `leave`, the interpreter will be fast-forwarded
        // to this index. We place the r-push, and leave a placeholder which
        // we'll fill when we know where the loop ends
        let rlit = self.find_word("(rliteral)").ok_or(Error::WordNotInDict)?;
        self.dict.alloc.bump_write(Word::ptr(rlit.as_ptr()))?;
        let rlit_offset: &mut i32 = {
            let cj_offset_word = self.dict.alloc.bump::<Word>()?;
            unsafe {
                cj_offset_word.as_ptr().write(Word::data(0));
                &mut (*cj_offset_word.as_ptr()).data
            }
        };
        *len += 2;

        // Take the loop start and end from the data stack to the return stack
        let d2r2 = self.find_word("2d>2r").ok_or(Error::WordNotInDict)?;
        self.dict.alloc.bump_write(Word::ptr(d2r2.as_ptr()))?;
        *len += 1;

        // Start is where the LOOP starts, e.g. where we need to jump back to
        let do_start = *len;

        // Now work until we hit an else or then statement.
        loop {
            match self.munch_one(len) {
                // We hit the end of stream before an else/then.
                Ok(0) => return Err(Error::DoWithoutLoop),
                // We compiled some stuff, keep going...
                Ok(_) => {}
                Err(Error::LoopBeforeDo) => {
                    break;
                }
                Err(e) => return Err(e),
            }
        }

        let delta = *len - do_start;
        let offset = i32::from(delta + 1).neg();
        let literal_dojmp = self.find_word("(jmp-doloop)").ok_or(Error::WordNotInDict)?;
        self.dict
            .alloc
            .bump_write(Word::ptr(literal_dojmp.as_ptr()))?;
        self.dict.alloc.bump_write(Word::data(offset))?;
        *len += 2;

        *rlit_offset = (*len).into();

        Ok(*len - pre_start)
    }

    fn munch_if(&mut self, len: &mut u16) -> Result<u16, Error> {
        let start = *len;

        // Write a conditional jump, followed by space for a literal
        let literal_cj = self.find_word("(jump-zero)").ok_or(Error::WordNotInDict)?;
        self.dict.alloc.bump_write(Word::ptr(literal_cj.as_ptr()))?;
        let cj_offset: &mut i32 = {
            let cj_offset_word = self.dict.alloc.bump::<Word>()?;
            unsafe {
                cj_offset_word.as_ptr().write(Word::data(0));
                &mut (*cj_offset_word.as_ptr()).data
            }
        };

        // Increment the length for the number so far.
        *len += 2;

        let mut else_then = false;
        let if_start = *len;
        // Now work until we hit an else or then statement.
        loop {
            match self.munch_one(len) {
                // We hit the end of stream before an else/then.
                Ok(0) => return Err(Error::IfWithoutThen),
                // We compiled some stuff, keep going...
                Ok(_) => {}
                Err(Error::ElseBeforeIf) => {
                    else_then = true;
                    break;
                }
                Err(Error::ThenBeforeIf) => break,
                Err(e) => return Err(e),
            }
        }

        let delta = *len - if_start;
        if !else_then {
            // we got a "then"
            //
            // Jump offset is words placed + 1 for the jump-zero literal
            *cj_offset = i32::from(delta) + 1;
            return Ok(*len - start);
        }
        // We got an "else", keep going for "then"
        //
        // Jump offset is words placed + 1 (cj lit) + 2 (else cj + lit)
        *cj_offset = i32::from(delta) + 3;

        // Write a conditional jump, followed by space for a literal
        let literal_jmp = self.find_word("(jmp)").ok_or(Error::WordNotInDict)?;
        self.dict
            .alloc
            .bump_write(Word::ptr(literal_jmp.as_ptr()))?;
        let jmp_offset: &mut i32 = {
            let jmp_offset_word = self.dict.alloc.bump::<Word>()?;
            unsafe {
                jmp_offset_word.as_ptr().write(Word::data(0));
                &mut (*jmp_offset_word.as_ptr()).data
            }
        };
        *len += 2;

        let else_start = *len;
        // Now work until we hit a then statement.
        loop {
            match self.munch_one(len) {
                // We hit the end of stream before a then.
                Ok(0) => return Err(Error::IfElseWithoutThen),
                // We compiled some stuff, keep going...
                Ok(_) => {}
                Err(Error::ElseBeforeIf) => return Err(Error::DuplicateElse),
                Err(Error::ThenBeforeIf) => break,
                Err(e) => return Err(e),
            }
        }

        let delta = *len - else_start;
        // Jump offset is words placed + 1 (jmp lit)
        *jmp_offset = i32::from(delta) + 1;

        Ok(*len - start)
    }

    fn munch_one(&mut self, len: &mut u16) -> Result<u16, Error> {
        let start = *len;
        self.input.advance();
        let word = match self.input.cur_word() {
            Some(w) => w,
            None => return Ok(0),
        };

        match self.lookup(word)? {
            Lookup::If => return self.munch_if(len),
            Lookup::Else => return Err(Error::ElseBeforeIf),
            Lookup::Then => return Err(Error::ThenBeforeIf),
            Lookup::Semicolon => return Ok(0),
            Lookup::Dict(DictLocation::Current(de)) | Lookup::Dict(DictLocation::Parent(de)) => {
                // Dictionary items are put into the CFA array directly as
                // a pointer to the dictionary entry
                self.dict.alloc.bump_write(Word::ptr(de.as_ptr()))?;
                *len += 1;
            }
            Lookup::Builtin { bi } => {
                self.dict.alloc.bump_write(Word::ptr(bi.as_ptr()))?;
                *len += 1;
            }
            #[cfg(feature = "async")]
            Lookup::Async { bi } => {
                self.dict.alloc.bump_write(Word::ptr(bi.as_ptr()))?;
                *len += 1;
            }
            #[cfg(feature = "floats")]
            Lookup::LiteralF { val } => {
                // Literals are added to the CFA as two items:
                //
                // 1. The address of the `literal()` dictionary item
                // 2. The value of the literal, as a data word
                let literal_dict = self.find_word("(literal)").ok_or(Error::WordNotInDict)?;
                self.dict
                    .alloc
                    .bump_write(Word::ptr(literal_dict.as_ptr()))?;
                self.dict.alloc.bump_write(Word::float(val))?;
                *len += 2;
            }
            Lookup::Literal { val } => {
                // Literals are added to the CFA as two items:
                //
                // 1. The address of the `literal()` dictionary item
                // 2. The value of the literal, as a data word
                let literal_dict = self.find_word("(literal)").ok_or(Error::WordNotInDict)?;
                self.dict
                    .alloc
                    .bump_write(Word::ptr(literal_dict.as_ptr()))?;
                self.dict.alloc.bump_write(Word::data(val))?;
                *len += 2;
            }
            Lookup::Do => return self.munch_do(len),
            Lookup::Loop => return Err(Error::LoopBeforeDo),
            Lookup::LParen => return self.munch_comment(len),
            Lookup::LQuote => return self.munch_str(len),
            Lookup::Constant => return self.munch_constant(len),
            Lookup::Variable => return self.munch_variable(len),
            Lookup::Array => return self.munch_array(len),
        }
        Ok(*len - start)
    }

    pub fn release(self) -> T {
        self.host_ctxt
    }

    fn munch_comment(&mut self, _len: &mut u16) -> Result<u16, Error> {
        loop {
            self.input.advance();
            match self.input.cur_word() {
                Some(s) => {
                    if s.ends_with(')') {
                        return Ok(0);
                    }
                }
                None => return Ok(0),
            }
        }
    }

    fn munch_str(&mut self, len: &mut u16) -> Result<u16, Error> {
        let start = *len;
        self.input
            .advance_str()
            .replace_err(Error::LQuoteMissingRQuote)?;
        let lit_str = self
            .input
            .cur_str_literal()
            .ok_or(Error::LQuoteMissingRQuote)?;
        let str_len =
            u16::try_from(lit_str.as_bytes().len()).replace_err(Error::LiteralStringTooLong)?;

        let literal_writestr = self.find_word("(write-str)").ok_or(Error::WordNotInDict)?;
        self.dict
            .alloc
            .bump_write::<Word>(Word::ptr(literal_writestr.as_ptr()))?;
        self.dict
            .alloc
            .bump_write::<Word>(Word::data(str_len.into()))?;
        *len += 2;

        let start_ptr = self
            .dict
            .alloc
            .bump_u8s(lit_str.as_bytes().len())
            .ok_or(Error::Bump(BumpError::OutOfMemory))?;

        unsafe {
            start_ptr
                .as_ptr()
                .copy_from_nonoverlapping(lit_str.as_bytes().as_ptr(), lit_str.as_bytes().len());
        }
        let word_size = size_of::<Word>();
        let words_written = (str_len as usize + (word_size - 1)) / word_size;
        *len += words_written as u16;

        Ok(*len - start)
    }

    /// Take the next token off of the input buffer as a name, and allocate the
    /// name in the dictionary.
    fn munch_name(&mut self) -> Result<FaStr, Error> {
        self.input.advance();
        let name = self
            .input
            .cur_word()
            .ok_or(Error::ColonCompileMissingName)?;
        self.dict.alloc.bump_str(name).map_err(Into::into)
    }

    // constant NAME VALUE
    fn munch_constant(&mut self, _len: &mut u16) -> Result<u16, Error> {
        let name = self.munch_name()?;

        self.input.advance();
        let value = self
            .input
            .cur_word()
            .ok_or(Error::ColonCompileMissingName)?;
        let value_i32 = value.parse::<i32>().replace_err(Error::BadLiteral)?;

        self.dict
            .build_entry()?
            .write_word(Word::data(value_i32))?
            // TODO: Should we look up `(constant)` for consistency?
            // Use `find_word`?
            .finish(name, Self::constant);
        Ok(0)
    }

    // variable NAME
    fn munch_variable(&mut self, _len: &mut u16) -> Result<u16, Error> {
        let name = self.munch_name()?;
        self.dict
            .build_entry()?
            .write_word(Word::data(0))?
            // TODO: Should we look up `(variable)` for consistency?
            // Use `find_word`?
            .finish(name, Self::variable);
        Ok(0)
    }

    // array NAME COUNT
    fn munch_array(&mut self, _len: &mut u16) -> Result<u16, Error> {
        let name = self.munch_name()?;

        self.input.advance();
        let count = self
            .input
            .cur_word()
            .ok_or(Error::ColonCompileMissingName)?;
        let count_u16 = count
            .parse::<NonZeroU16>()
            .replace_err(Error::BadArrayLength)?;

        let mut entry = self.dict.build_entry()?;
        for _ in 0..u16::from(count_u16) {
            entry = entry.write_word(Word::data(0))?;
        }
        // TODO: Should arrays push length and ptr? Or just ptr?
        //
        // TODO: Should we look up `(variable)` for consistency?
        // Use `find_word`?
        entry.finish(name, Self::variable);
        Ok(0)
    }
}

/// # Safety
///
/// A `Forth` VM contains raw pointers. However, these raw pointers point into
/// regions which are exclusively owned by the `Forth` VM, and they are only
/// mutably dereferenced by methods which take ownership over the Forth VM. The
/// Constructing a new VM via `Forth::new` is unsafe, as the caller is
/// responsible for ensuring that the pointed memory regions are exclusively
/// owned by the `Forth` VM and that they live at least as long as the VM does,
/// but as long as those invariants are upheld, the VM may be shared across
/// thread boundaries.
// TODO(eliza): it would be nicer if there was a way to have a version of
// `LBForth` or something that bundles a `Forth` VM together with its owned
// buffers, but without requiring `liballoc`...idk what that would look like.
unsafe impl<T: Send> Send for Forth<T> {}
unsafe impl<T: Sync> Sync for Forth<T> {}