1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
//! A heap-less, interrupt-safe, lock-free memory pool (\*)
//!
//! NOTE: This module is not available on targets that do *not* support CAS operations and are not
//! emulated by the [`atomic_polyfill`](https://crates.io/crates/atomic-polyfill) crate (e.g.,
//! MSP430).
//!
//! (\*) Currently, the implementation is only lock-free *and* `Sync` on ARMv6, ARMv7-{A,R,M} & ARMv8-M
//! devices
//!
//! # Examples
//!
//! The most common way of using this pool is as a global singleton; the singleton mode gives you
//! automatic deallocation of memory blocks on `drop`.
//!
//! ``` ignore
//! #![no_main]
//! #![no_std]
//!
//! use cortex_m_rt::{entry, exception};
//! use heapless::{
//! pool,
//! pool::singleton::{Box, Pool},
//! };
//!
//! // instantiate a memory pool of `[u8; 128]` blocks as a global singleton
//! pool!(
//! // attributes can be used here
//! // #[link_section = ".ccram.A"]
//! A: [u8; 128]
//! );
//!
//! #[entry]
//! fn main() -> ! {
//! static mut MEMORY: [u8; 1024] = [0; 1024];
//!
//! // increase the capacity of the pool by ~8 blocks
//! A::grow(MEMORY);
//!
//! // claim a block of memory
//! // note that the type is `Box<A>`, and not `Box<[u8; 128]>`
//! // `A` is the "name" of the pool
//! let x: Box<A, _> = A::alloc().unwrap();
//! loop {
//! // .. do stuff with `x` ..
//! }
//! }
//!
//! #[exception]
//! fn SysTick() {
//! // claim a block of memory
//! let y = A::alloc().unwrap();
//!
//! // .. do stuff with `y` ..
//!
//! // return the memory block to the pool
//! drop(y);
//! }
//! ```
//!
//! # Portability
//!
//! This pool internally uses a Treiber stack which is known to be susceptible to the ABA problem.
//! The only counter measure against the ABA problem that this implementation currently takes is
//! relying on LL/SC (Link-local / Store-conditional) instructions being used to implement CAS loops
//! on the target architecture (see section on ['Soundness'](#soundness) for more information). For
//! this reason, `Pool` only implements `Sync` when compiling for some ARM cores.
//!
//! This module requires CAS atomic instructions which are not available on all architectures (e.g.
//! ARMv6-M (`thumbv6m-none-eabi`) and MSP430 (`msp430-none-elf`)). These atomics can be emulated
//! however with [`atomic_polyfill`](https://crates.io/crates/atomic-polyfill), which is enabled
//! with the `cas` feature and is enabled by default for `thumbv6m-none-eabi` and `riscv32` targets.
//! MSP430 is currently not supported by
//! [`atomic_polyfill`](https://crates.io/crates/atomic-polyfill).
//!
//! # Soundness
//!
//! This pool uses a Treiber stack to keep a list of free memory blocks (nodes). Each of these
//! nodes has a pointer to the next node. To claim a memory block we simply pop a node from the
//! top of the stack and use it as a memory block. The pop operation consists of swapping the
//! current head (top) node with the node below it. The Rust code for the `pop` operation is shown
//! below:
//!
//! ``` ignore
//! fn pop(&self) -> Option<NonNull<Node<T>>> {
//! let fetch_order = ..;
//! let set_order = ..;
//!
//! // `self.head` has type `AtomicPtr<Node<T>>`
//! // where `struct Node<T> { next: AtomicPtr<Node<T>>, data: UnsafeCell<T> }`
//! let mut head = self.head.load(fetch_order);
//! loop {
//! if let Some(nn_head) = NonNull::new(head) {
//! let next = unsafe { (*head).next.load(Ordering::Relaxed) };
//!
//! // <~ preempted
//!
//! match self
//! .head
//! .compare_exchange_weak(head, next, set_order, fetch_order)
//! {
//! Ok(_) => break Some(nn_head),
//! // head was changed by some interrupt handler / thread
//! Err(new_head) => head = new_head,
//! }
//! } else {
//! // stack is observed as empty
//! break None;
//! }
//! }
//! }
//! ```
//!
//! In general, the `pop` operation is susceptible to the ABA problem. If this operation gets
//! preempted by some interrupt handler somewhere between the `head.load` and the
//! `compare_and_exchange_weak`, and that handler modifies the stack in such a way that the head
//! (top) of the stack remains unchanged then resuming the `pop` operation will corrupt the stack.
//!
//! An example: imagine we are doing on `pop` on stack that contains these nodes: `A -> B -> C`,
//! `A` is the head (top), `B` is next to `A` and `C` is next to `B`. The `pop` operation will do a
//! `CAS(&self.head, A, B)` operation to atomically change the head to `B` iff it currently is `A`.
//! Now, let's say a handler preempts the `pop` operation before the `CAS` operation starts and it
//! `pop`s the stack twice and then `push`es back the `A` node; now the state of the stack is `A ->
//! C`. When the original `pop` operation is resumed it will succeed in doing the `CAS` operation
//! setting `B` as the head of the stack. However, `B` was used by the handler as a memory block and
//! no longer is a valid free node. As a result the stack, and thus the allocator, is in a invalid
//! state.
//!
//! However, not all is lost because ARM devices use LL/SC (Link-local / Store-conditional)
//! operations to implement CAS loops. Let's look at the actual disassembly of `pop` for the ARM
//! Cortex-M.
//!
//! ``` text
//! 08000130 <<heapless::pool::Pool<T>>::pop>:
//! 8000130: 6802 ldr r2, [r0, #0]
//! 8000132: e00c b.n 800014e <<heapless::pool::Pool<T>>::pop+0x1e>
//! 8000134: 4611 mov r1, r2
//! 8000136: f8d2 c000 ldr.w ip, [r2]
//! 800013a: e850 2f00 ldrex r2, [r0]
//! 800013e: 428a cmp r2, r1
//! 8000140: d103 bne.n 800014a <<heapless::pool::Pool<T>>::pop+0x1a>
//! 8000142: e840 c300 strex r3, ip, [r0]
//! 8000146: b913 cbnz r3, 800014e <<heapless::pool::Pool<T>>::pop+0x1e>
//! 8000148: e004 b.n 8000154 <<heapless::pool::Pool<T>>::pop+0x24>
//! 800014a: f3bf 8f2f clrex
//! 800014e: 2a00 cmp r2, #0
//! 8000150: d1f0 bne.n 8000134 <<heapless::pool::Pool<T>>::pop+0x4>
//! 8000152: 2100 movs r1, #0
//! 8000154: 4608 mov r0, r1
//! 8000156: 4770 bx lr
//! ```
//!
//! LDREX ("load exclusive") is the LL instruction, and STREX ("store exclusive") is the SC
//! instruction (see [1](#references)). On the Cortex-M, STREX will always fail if the processor
//! takes an exception between it and its corresponding LDREX operation (see [2](#references)). If
//! STREX fails then the CAS loop is retried (see instruction @ `0x8000146`). On single core
//! systems, preemption is required to run into the ABA problem and on Cortex-M devices preemption
//! always involves taking an exception. Thus the underlying LL/SC operations prevent the ABA
//! problem on Cortex-M.
//!
//! In the case of multi-core systems if any other core successfully does a STREX op on the head
//! while the current core is somewhere between LDREX and STREX then the current core will fail its
//! STREX operation.
//!
//! # x86_64 support / limitations
//!
//! *NOTE* `Pool` is only `Sync` on `x86_64` and `x86` (`i686`) if the Cargo feature "x86-sync-pool"
//! is enabled
//!
//! x86_64 support is a gamble. Yes, a gamble. Do you feel lucky enough to use `Pool` on x86_64?
//!
//! As it's not possible to implement *ideal* LL/SC semantics (\*) on x86_64 the architecture is
//! susceptible to the ABA problem described above. To *reduce the chances* of ABA occurring in
//! practice we use version tags (keyword: IBM ABA-prevention tags). Again, this approach does
//! *not* fix / prevent / avoid the ABA problem; it only reduces the chance of it occurring in
//! practice but the chances of it occurring are not reduced to zero.
//!
//! How we have implemented version tags: instead of using an `AtomicPtr` to link the stack `Node`s
//! we use an `AtomicUsize` where the 64-bit `usize` is always comprised of a monotonically
//! increasing 32-bit tag (higher bits) and a 32-bit signed address offset. The address of a node is
//! computed by adding the 32-bit offset to an "anchor" address (the address of a static variable
//! that lives somewhere in the `.bss` linker section). The tag is increased every time a node is
//! popped (removed) from the stack.
//!
//! To see how version tags can prevent ABA consider the example from the previous section. Let's
//! start with a stack in this state: `(~A, 0) -> (~B, 1) -> (~C, 2)`, where `~A` represents the
//! address of node A as a 32-bit offset from the "anchor" and the second tuple element (e.g. `0`)
//! indicates the version of the node. For simplicity, assume a single core system: thread T1 is
//! performing `pop` and before `CAS(&self.head, (~A, 0), (~B, 1))` is executed a context switch
//! occurs and the core resumes T2. T2 pops the stack twice and pushes A back into the stack;
//! because the `pop` operation increases the version the stack ends in the following state: `(~A,
//! 1) -> (~C, 2)`. Now if T1 is resumed the CAS operation will fail because `self.head` is `(~A,
//! 1)` and not `(~A, 0)`.
//!
//! When can version tags fail to prevent ABA? Using the previous example: if T2 performs a `push`
//! followed by a `pop` `(1 << 32) - 1` times before doing its original `pop` - `pop` - `push`
//! operation then ABA will occur because the version tag of node `A` will wraparound to its
//! original value of `0` and the CAS operation in T1 will succeed and corrupt the stack.
//!
//! It does seem unlikely that (1) a thread will perform the above operation and (2) that the above
//! operation will complete within one time slice, assuming time sliced threads. If you have thread
//! priorities then the above operation could occur during the lifetime of many high priorities
//! threads if T1 is running at low priority.
//!
//! Other implementations of version tags use more than 32 bits in their tags (e.g. "Scalable
//! Lock-Free Dynamic Memory Allocation" uses 42-bit tags in its super blocks). In theory, one could
//! use double-word CAS on x86_64 to pack a 64-bit tag and a 64-bit pointer in a double-word but
//! this CAS operation is not exposed in the standard library (and I think it's not available on
//! older x86_64 processors?)
//!
//! (\*) Apparently one can emulate proper LL/SC semantics on x86_64 using hazard pointers (?) --
//! the technique appears to be documented in "ABA Prevention Using Single-Word Instructions", which
//! is not public AFAICT -- but hazard pointers require Thread Local Storage (TLS), which is a
//! non-starter for a `no_std` library like `heapless`.
//!
//! ## x86_64 Limitations
//!
//! *NOTE* this limitation does not apply to `x86` (32-bit address space). If you run into this
//! issue, on an x86_64 processor try running your code compiled for `x86`, e.g. `cargo run --target
//! i686-unknown-linux-musl`
//!
//! Because stack nodes must be located within +- 2 GB of the hidden `ANCHOR` variable, which
//! lives in the `.bss` section, `Pool` may not be able to manage static references created using
//! `Box::leak` -- these heap allocated chunks of memory may live in a very different address space.
//! When the `Pool` is unable to manage a node because of its address it will simply discard it:
//! `Pool::grow*` methods return the number of new memory blocks added to the pool; if these methods
//! return `0` it means the `Pool` is unable to manage the memory given to them.
//!
//! # References
//!
//! 1. [Cortex-M3 Devices Generic User Guide (DUI 0552A)][0], Section 2.2.7 "Synchronization
//! primitives"
//!
//! [0]: http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf
//!
//! 2. [ARMv7-M Architecture Reference Manual (DDI 0403E.b)][1], Section A3.4 "Synchronization and
//! semaphores"
//!
//! [1]: https://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
//!
//! 3. "Scalable Lock-Free Dynamic Memory Allocation" Michael, Maged M.
//!
//! 4. "Hazard pointers: Safe memory reclamation for lock-free objects." Michael, Maged M.
use core::{any::TypeId, mem};
use core::{
cmp, fmt,
hash::{Hash, Hasher},
marker::PhantomData,
mem::MaybeUninit,
ops::{Deref, DerefMut},
ptr::{self, NonNull},
};
pub use stack::Node;
use stack::{Ptr, Stack};
pub mod singleton;
#[cfg_attr(any(target_arch = "x86_64", target_arch = "x86"), path = "cas.rs")]
#[cfg_attr(
not(any(target_arch = "x86_64", target_arch = "x86")),
path = "llsc.rs"
)]
mod stack;
/// A lock-free memory pool
pub struct Pool<T> {
stack: Stack<T>,
// Current implementation is unsound on architectures that don't have LL/SC semantics so this
// struct is not `Sync` on those platforms
_not_send_or_sync: PhantomData<*const ()>,
}
// NOTE(any(test)) makes testing easier (no need to enable Cargo features for testing)
#[cfg(any(
armv6m,
armv7a,
armv7r,
armv7m,
armv8m_main,
all(
any(target_arch = "x86_64", target_arch = "x86"),
feature = "x86-sync-pool"
),
test
))]
unsafe impl<T> Sync for Pool<T> {}
unsafe impl<T> Send for Pool<T> {}
impl<T> Pool<T> {
/// Creates a new empty pool
pub const fn new() -> Self {
Pool {
stack: Stack::new(),
_not_send_or_sync: PhantomData,
}
}
/// Claims a memory block from the pool
///
/// Returns `None` when the pool is observed as exhausted
///
/// *NOTE:* This method does *not* have bounded execution time because it contains a CAS loop
pub fn alloc(&self) -> Option<Box<T, Uninit>> {
if mem::size_of::<T>() == 0 {
// NOTE because we return a dangling pointer to a NODE, which has non-zero size
// even when T is a ZST, in this case we need to make sure we
// - don't do pointer arithmetic on this pointer
// - dereference that offset-ed pointer as a ZST
// because miri doesn't like that
return Some(Box {
node: Ptr::dangling(),
_state: PhantomData,
});
}
if let Some(node) = self.stack.try_pop() {
Some(Box {
node,
_state: PhantomData,
})
} else {
None
}
}
/// Returns a memory block to the pool
///
/// *NOTE*: `T`'s destructor (if any) will run on `value` iff `S = Init`
///
/// *NOTE:* This method does *not* have bounded execution time because it contains a CAS loop
pub fn free<S>(&self, value: Box<T, S>)
where
S: 'static,
{
if TypeId::of::<S>() == TypeId::of::<Init>() {
let p = if mem::size_of::<T>() == 0 {
// any pointer will do to invoke the destructor of a ZST
NonNull::dangling().as_ptr()
} else {
unsafe { value.node.as_ref().data.get() }
};
unsafe {
ptr::drop_in_place(p);
}
}
// no operation
if mem::size_of::<T>() == 0 {
return;
}
self.stack.push(value.node)
}
/// Increases the capacity of the pool
///
/// This method might *not* fully utilize the given memory block due to alignment requirements.
///
/// This method returns the number of *new* blocks that can be allocated.
pub fn grow(&self, memory: &'static mut [u8]) -> usize {
if mem::size_of::<T>() == 0 {
// ZST use no memory so a pool of ZST always has maximum capacity
return usize::max_value();
}
let sz = mem::size_of::<Node<T>>();
let mut p = memory.as_mut_ptr();
let mut len = memory.len();
let align = mem::align_of::<Node<T>>();
let rem = (p as usize) % align;
if rem != 0 {
let offset = align - rem;
if offset >= len {
// slice is too small
return 0;
}
p = unsafe { p.add(offset) };
len -= offset;
}
let mut n = 0;
while len >= sz {
match () {
#[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
() => {
if let Some(p) = Ptr::new(p as *mut _) {
self.stack.push(p);
n += 1;
}
}
#[cfg(not(any(target_arch = "x86_64", target_arch = "x86")))]
() => {
self.stack.push(unsafe { Ptr::new_unchecked(p as *mut _) });
n += 1;
}
}
p = unsafe { p.add(sz) };
len -= sz;
}
n
}
/// Increases the capacity of the pool
///
/// Unlike [`Pool.grow`](struct.Pool.html#method.grow) this method fully utilizes the given
/// memory block
pub fn grow_exact<A>(&self, memory: &'static mut MaybeUninit<A>) -> usize
where
A: AsMut<[Node<T>]>,
{
if mem::size_of::<T>() == 0 {
return usize::max_value();
}
let nodes = unsafe { (*memory.as_mut_ptr()).as_mut() };
let cap = nodes.len();
for p in nodes {
match () {
#[cfg(any(target_arch = "x86_64", target_arch = "x86"))]
() => {
if let Some(p) = Ptr::new(p) {
self.stack.push(p);
}
}
#[cfg(not(any(target_arch = "x86_64", target_arch = "x86")))]
() => self.stack.push(core::ptr::NonNull::from(p)),
}
}
cap
}
}
/// A memory block
pub struct Box<T, STATE = Init> {
_state: PhantomData<STATE>,
node: Ptr<Node<T>>,
}
impl<T> Box<T, Uninit> {
/// Initializes this memory block
pub fn init(self, val: T) -> Box<T, Init> {
if mem::size_of::<T>() == 0 {
// no memory operation needed for ZST
// BUT we want to avoid calling `val`s destructor
mem::forget(val)
} else {
unsafe {
ptr::write(self.node.as_ref().data.get(), val);
}
}
Box {
node: self.node,
_state: PhantomData,
}
}
}
/// Uninitialized type state
pub enum Uninit {}
/// Initialized type state
pub enum Init {}
unsafe impl<T, S> Send for Box<T, S> where T: Send {}
unsafe impl<T, S> Sync for Box<T, S> where T: Sync {}
unsafe impl<T> stable_deref_trait::StableDeref for Box<T> {}
impl<A, T> AsRef<[T]> for Box<A>
where
A: AsRef<[T]>,
{
fn as_ref(&self) -> &[T] {
self.deref().as_ref()
}
}
impl<A, T> AsMut<[T]> for Box<A>
where
A: AsMut<[T]>,
{
fn as_mut(&mut self) -> &mut [T] {
self.deref_mut().as_mut()
}
}
impl<T> Deref for Box<T> {
type Target = T;
fn deref(&self) -> &T {
if mem::size_of::<T>() == 0 {
// any pointer will do for ZST
unsafe { &*NonNull::dangling().as_ptr() }
} else {
unsafe { &*self.node.as_ref().data.get() }
}
}
}
impl<T> DerefMut for Box<T> {
fn deref_mut(&mut self) -> &mut T {
if mem::size_of::<T>() == 0 {
// any pointer will do for ZST
unsafe { &mut *NonNull::dangling().as_ptr() }
} else {
unsafe { &mut *self.node.as_ref().data.get() }
}
}
}
impl<T> fmt::Debug for Box<T>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
<T as fmt::Debug>::fmt(self, f)
}
}
impl<T> fmt::Display for Box<T>
where
T: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
<T as fmt::Display>::fmt(self, f)
}
}
impl<T> PartialEq for Box<T>
where
T: PartialEq,
{
fn eq(&self, rhs: &Box<T>) -> bool {
<T as PartialEq>::eq(self, rhs)
}
}
impl<T> Eq for Box<T> where T: Eq {}
impl<T> PartialOrd for Box<T>
where
T: PartialOrd,
{
fn partial_cmp(&self, rhs: &Box<T>) -> Option<cmp::Ordering> {
<T as PartialOrd>::partial_cmp(self, rhs)
}
}
impl<T> Ord for Box<T>
where
T: Ord,
{
fn cmp(&self, rhs: &Box<T>) -> cmp::Ordering {
<T as Ord>::cmp(self, rhs)
}
}
impl<T> Hash for Box<T>
where
T: Hash,
{
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
<T as Hash>::hash(self, state)
}
}
#[cfg(test)]
mod tests {
use core::{
mem::{self, MaybeUninit},
sync::atomic::{AtomicUsize, Ordering},
};
use super::{Node, Pool};
#[test]
fn grow() {
static mut MEMORY: [u8; 1024] = [0; 1024];
static POOL: Pool<[u8; 128]> = Pool::new();
unsafe {
POOL.grow(&mut MEMORY);
}
for _ in 0..7 {
assert!(POOL.alloc().is_some());
}
}
#[test]
fn grow_exact() {
const SZ: usize = 8;
static mut MEMORY: MaybeUninit<[Node<[u8; 128]>; SZ]> = MaybeUninit::uninit();
static POOL: Pool<[u8; 128]> = Pool::new();
unsafe {
POOL.grow_exact(&mut MEMORY);
}
for _ in 0..SZ {
assert!(POOL.alloc().is_some());
}
assert!(POOL.alloc().is_none());
}
#[test]
fn sanity() {
const SZ: usize = 2 * mem::size_of::<Node<u8>>() - 1;
static mut MEMORY: [u8; SZ] = [0; SZ];
static POOL: Pool<u8> = Pool::new();
// empty pool
assert!(POOL.alloc().is_none());
POOL.grow(unsafe { &mut MEMORY });
let x = POOL.alloc().unwrap().init(0);
assert_eq!(*x, 0);
// pool exhausted
assert!(POOL.alloc().is_none());
POOL.free(x);
// should be possible to allocate again
assert_eq!(*POOL.alloc().unwrap().init(1), 1);
}
#[test]
fn destructors() {
static COUNT: AtomicUsize = AtomicUsize::new(0);
struct X;
impl X {
fn new() -> X {
COUNT.fetch_add(1, Ordering::Relaxed);
X
}
}
impl Drop for X {
fn drop(&mut self) {
COUNT.fetch_sub(1, Ordering::Relaxed);
}
}
static mut MEMORY: [u8; 31] = [0; 31];
static POOL: Pool<X> = Pool::new();
POOL.grow(unsafe { &mut MEMORY });
let x = POOL.alloc().unwrap().init(X::new());
let y = POOL.alloc().unwrap().init(X::new());
let z = POOL.alloc().unwrap().init(X::new());
assert_eq!(COUNT.load(Ordering::Relaxed), 3);
// this leaks memory
drop(x);
assert_eq!(COUNT.load(Ordering::Relaxed), 3);
// this leaks memory
mem::forget(y);
assert_eq!(COUNT.load(Ordering::Relaxed), 3);
// this runs `X` destructor
POOL.free(z);
assert_eq!(COUNT.load(Ordering::Relaxed), 2);
}
}