1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
//! EmbDisplay Service v2
//!
//! EmbDisplayV2 is the second generation display driver interface.
//!
//! Users are expected to allocate [FrameChunk]s, which are a subsection of the
//! total screen, and send them to the Display service for drawing. Once drawn,
//! the display returns the chunks to the user for potential re-use.
//!
//! See the docs of [FrameChunk] and [EmbDisplayClient] for additional details
//! of use.
use embedded_graphics::{
pixelcolor::{BinaryColor, Gray8},
prelude::*,
};
use uuid::Uuid;
use crate::{
comms::oneshot::Reusable,
mnemos_alloc::containers::HeapArray,
registry::{self, Envelope, KernelHandle, RegisteredDriver},
Kernel,
};
////////////////////////////////////////////////////////////////////////////////
// Service Definition
////////////////////////////////////////////////////////////////////////////////
/// Registered driver type for the `EmbDisplay` service.
///
/// This module provides an implementation of the client for this service, but
/// not the server. A server implementing this service must be provided by the
/// hardware platform implementation.
pub struct EmbDisplayService;
// impl EmbDisplay
impl RegisteredDriver for EmbDisplayService {
type Request = Request;
type Response = Response;
type Error = FrameError;
type Hello = ();
type ConnectError = core::convert::Infallible;
const UUID: Uuid = registry::known_uuids::kernel::EMB_DISPLAY_V2;
}
////////////////////////////////////////////////////////////////////////////////
// Message and Error Types
////////////////////////////////////////////////////////////////////////////////
/// These are all of the possible requests from client to server
pub enum Request {
GetMeta,
Draw(FrameChunk),
}
pub enum Response {
FrameMeta(DisplayMetadata),
/// Successful draw
DrawComplete(FrameChunk),
}
#[derive(Debug, Eq, PartialEq)]
pub enum FrameError {
/// We are still waiting for a response from the last request
Busy,
/// Internal Error
InternalError,
}
////////////////////////////////////////////////////////////////////////////////
// Client Definition
////////////////////////////////////////////////////////////////////////////////
/// Client interface to [`EmbDisplayService`].
pub struct EmbDisplayClient {
prod: KernelHandle<EmbDisplayService>,
reply: Reusable<Envelope<Result<Response, FrameError>>>,
}
impl EmbDisplayClient {
/// Obtain a new client handle by querying the registry for a registered
/// [`EmbDisplayService`].
///
/// Will retry until success
pub async fn from_registry(
kernel: &'static Kernel,
) -> Result<Self, registry::ConnectError<EmbDisplayService>> {
let prod = kernel.registry().connect::<EmbDisplayService>(()).await?;
Ok(EmbDisplayClient {
prod,
reply: Reusable::new_async().await,
})
}
/// Obtain a new client handle by querying the registry for a registered
/// [`EmbDisplayService`].
///
/// Will not retry if not immediately successful
pub async fn from_registry_no_retry(
kernel: &'static Kernel,
) -> Result<Self, registry::ConnectError<EmbDisplayService>> {
let prod = kernel
.registry()
.try_connect::<EmbDisplayService>(())
.await?;
Ok(EmbDisplayClient {
prod,
reply: Reusable::new_async().await,
})
}
pub async fn draw<C: Into<FrameChunk>>(&mut self, chunk: C) -> Result<FrameChunk, FrameError> {
let chunk = chunk.into();
let resp = self
.prod
.request_oneshot(Request::Draw(chunk), &self.reply)
.await
.map_err(|_| FrameError::InternalError)?
.body?;
Ok(match resp {
Response::DrawComplete(fc) => fc,
_ => return Err(FrameError::InternalError),
})
}
pub async fn draw_mono(&mut self, chunk: MonoChunk) -> Result<MonoChunk, FrameError> {
match self.draw(chunk).await {
Ok(FrameChunk::Mono(mfc)) => Ok(mfc),
_ => Err(FrameError::InternalError),
}
}
pub async fn get_meta(&mut self) -> Result<DisplayMetadata, FrameError> {
let resp = self
.prod
.request_oneshot(Request::GetMeta, &self.reply)
.await
.map_err(|_| FrameError::InternalError)?
.body?;
Ok(match resp {
Response::FrameMeta(m) => m,
Response::DrawComplete(_) => return Err(FrameError::InternalError),
})
}
}
/// A drawable buffer
///
/// The [FrameChunk] represents a section of allocated memory that can be drawn
/// into. It can be one of multiple "kinds" of buffer, representing different
/// color and transparency depths.
///
/// Users may use any kind of buffer they'd like, and displays are expected to
/// convert to a format that they can use, for example down or upsampling color
/// depth, converting color to grayscale, etc.
///
/// This [FrameChunk] is passed to [EmbDisplayClient::draw()] to be rendered to
/// the display
///
/// ## Subsizing
///
/// This frame chunk is expected to be equal or smaller than the total display
/// itself, and each of the kinds of framechunk will have [metadata] that contains
/// both the position and the size of the framechunk. Framechunks can be moved
/// but not resized (if resizing is necessary, the current chunk should be dropped
/// and a new one should be allocated).
///
/// [metadata]: [FrameBufMeta]
///
/// ## Transparency
///
/// FrameChunks also have a transparency component, which allows them to be used for
/// [blitting] or [compositing] onto the final display image.
///
/// [blitting]: https://en.wikipedia.org/wiki/Bit_blit
/// [compositing]: https://en.wikipedia.org/wiki/Compositing
///
/// For example, a circle with radius of 80 pixels could be drawn in a 100x100
/// FrameChunk, with the area outside of the circle marked as transparent. This
/// allows the 100x100 square to be "blitted" at the target location without
/// overwriting the existing content or background outside the circle.
///
/// This could also be used to keep persistently drawn [sprites] in memory,
/// layering them onto the target frame.
///
/// All FrameChunk kinds have some kind of transparency, though this may range from
/// a single bit transparency (transparent or not), to a more complex [alpha channel]
///
/// [alpha channel]: https://en.wikipedia.org/wiki/Alpha_compositing
/// [sprites]: https://en.wikipedia.org/wiki/Sprite_(computer_graphics)
#[non_exhaustive]
pub enum FrameChunk {
Mono(MonoChunk),
}
impl From<MonoChunk> for FrameChunk {
fn from(value: MonoChunk) -> Self {
FrameChunk::Mono(value)
}
}
// TODO: both the data and the mask could be stored 1bpp, however because
// that math was beyond me at the time, I am storing them 8bpp, which is
// very wasteful in terms of memory, but means that we don't need to do
// tricky bit operations.
//
// On the other hand, it is likely a bit less computationally intense to
// stick with byte addressing, as we don't need to do shifting and such
// for individual pixel operations, but there might be nice ways to accelerate
// that, though then you need to worry about "alignment" of data, e.g. if the
// start_x is not a multiple of 8.
//
// It may just be worth adding a "MonoChunk1bpp" variant in the future to allow
// users to make the size/perf tradeoff, particularly if we want to support
// targets with very small memory. For example, a 400x240 monochrome display would
// be 93.75KiB at 8bpp, but only 11.72KiB at 1bpp.
pub struct MonoChunk {
meta: FrameChunkMetadata,
data: Buf8,
mask: Buf8,
}
impl MonoChunk {
/// Mark all transparency data as fully transparent
pub fn clear(&mut self) {
self.mask.bytes.iter_mut().for_each(|b| *b = 0);
}
/// Allocate a monochrome framebuffer with the given metadata
pub async fn allocate_mono(size: FrameLocSize) -> Self {
let meta = FrameChunkMetadata {
start_x: size.offset_x,
start_y: size.offset_y,
width: size.width,
height: size.height,
};
let ttl = (size.width * size.height) as usize;
let data = Buf8 {
bytes: HeapArray::new(ttl, 0).await,
};
let mask = Buf8 {
bytes: HeapArray::new(ttl, 0).await,
};
MonoChunk { meta, data, mask }
}
/// Invert all pixels that are NOT currently transparent
///
/// This can be used to "unblit" an image
pub fn invert_masked(&mut self) {
self.data
.bytes
.iter_mut()
.zip(self.mask.bytes.iter())
.for_each(|(d, m)| {
if *m != 0 {
*d = !*d;
}
});
}
/// Get the metadata of this FrameChunk
pub fn meta(&self) -> &FrameChunkMetadata {
&self.meta
}
/// Get the metadatae of this FrameChunk as a mutable reference
pub fn meta_mut(&mut self) -> &mut FrameChunkMetadata {
&mut self.meta
}
/// Get the raw pixel data
///
/// This is currently one byte per pixel, with 0x00 representing "OFF" and
/// 0xFF representing "ON". All other values are invalid.
///
// TODO: This interface would semantically change if we switch to 1bpp!
pub fn data(&self) -> &[u8] {
let bytes = self.meta.width * self.meta.height;
let data_sli: &[u8] = &self.data.bytes;
assert_eq!(bytes as usize, data_sli.len());
data_sli
}
/// Get the raw mask data
///
/// This is currently one byte per pixel, with 0x00 representing "Transparent"
/// and 0xFF representing "Solid". All other values are invalid.
///
// TODO: This interface would semantically change if we switch to 1bpp!
pub fn mask(&self) -> &[u8] {
let bytes = self.meta.width * self.meta.height;
let mask_sli: &[u8] = &self.mask.bytes;
assert_eq!(bytes as usize, mask_sli.len());
mask_sli
}
/// Draw the given pixel, and mark the pixel as not transparent
///
/// If you want to instead mark the pixel as transparent, see
/// [MonoChunk::clear_pixel()].
#[inline]
pub fn draw_pixel(&mut self, x: u32, y: u32, state: bool) {
let idx = match self.pix_idx(x, y) {
Some(i) => i,
None => return,
};
self.data.bytes[idx] = match state {
false => Gray8::BLACK.into_storage(),
true => Gray8::WHITE.into_storage(),
};
self.mask.bytes[idx] = 0xFF;
}
/// Get the data/mask array index of the given X/Y coordinates
///
/// This does NOT account for `offset`, this is only in the coordinate system
/// of the [MonoChunk], not the total display.
///
/// Returns None if the given x/y coordinates are outside of the [MonoChunk]
pub fn pix_idx(&self, x: u32, y: u32) -> Option<usize> {
if x >= self.meta.width {
return None;
}
if y >= self.meta.height {
return None;
}
Some(((y * self.meta.width) + x) as usize)
}
/// Clear the given pixel by marking it as transparent
///
/// NOTE: This is not used for setting the pixel as "off", instead
/// use [MonoChunk::draw_pixel()].
#[inline]
pub fn clear_pixel(&mut self, x: u32, y: u32) {
let idx = match self.pix_idx(x, y) {
Some(i) => i,
None => return,
};
self.mask.bytes[idx] = 0x00;
}
}
/// FrameChunk implements embedded-graphics's `DrawTarget` trait so that clients
/// can directly use embedded-graphics primitives for drawing into the framebuffer.
impl DrawTarget for MonoChunk {
type Color = BinaryColor;
type Error = core::convert::Infallible;
fn draw_iter<I>(&mut self, pixels: I) -> Result<(), Self::Error>
where
I: IntoIterator<Item = Pixel<Self::Color>>,
{
for Pixel(coord, color) in pixels.into_iter() {
let Ok((x, y)): Result<(u32, u32), _> = coord.try_into() else {
continue;
};
self.draw_pixel(x, y, color.is_on());
}
Ok(())
}
}
/// This is used for placing the [FrameChunk] in the overall display
pub struct FrameLocSize {
/// Offset in pixels from the top left corner (rightward)
pub offset_x: u32,
/// Offset in pixels from the top left corner (downward)
pub offset_y: u32,
/// Width of the frame chunk in pixels
pub width: u32,
/// Height of the frame chunk in pixels
pub height: u32,
}
/// Kinds of [FrameChunk]s
#[derive(Clone, Copy, Debug)]
#[non_exhaustive]
pub enum FrameKind {
/// Monochrome - matches [FrameChunk::Mono]
Mono,
}
impl OriginDimensions for MonoChunk {
fn size(&self) -> Size {
Size::new(self.meta.width, self.meta.height)
}
}
impl OriginDimensions for FrameChunk {
#[inline]
fn size(&self) -> Size {
match self {
FrameChunk::Mono(mc) => mc.size(),
}
}
}
/// Metadata of the entire display
#[derive(Copy, Clone, Debug)]
pub struct DisplayMetadata {
pub kind: FrameKind,
pub width: u32,
pub height: u32,
}
/// Metadata of the [FrameChunk]
#[derive(Copy, Clone)]
pub struct FrameChunkMetadata {
start_x: u32,
start_y: u32,
width: u32,
height: u32,
}
impl FrameChunkMetadata {
pub fn start_x(&self) -> u32 {
self.start_x
}
pub fn start_y(&self) -> u32 {
self.start_y
}
pub fn set_start_x(&mut self, start_x: u32) {
self.start_x = start_x;
}
pub fn set_start_y(&mut self, start_y: u32) {
self.start_y = start_y;
}
pub fn width(&self) -> u32 {
self.width
}
pub fn height(&self) -> u32 {
self.height
}
}
struct Buf8 {
bytes: HeapArray<u8>,
}