1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
//! I²C Driver Service
//!
//! This module contains a service definition for drivers for the I²C
//! bus.
//!
//! ## About I²C
//!
//! I²C, according to the [RP2040 datasheet], is "an ubiquitous
//! serial bus first described in the Dead Sea Scrolls, and later used by
//! Philips Semiconductor". It's a two-wire, multi-drop bus, allowing multiple
//! devices to be connected to a single clock and data line.
//!
//! Unlike SPI, this is a "real protocol", and not just a sort of shared
//! hallucination about the meanings of certain wires. That means it has
//! _rules_. Some of these rules are relevant to users of this module. In
//! particular:
//!
//! * I²C has a first-class notion of controller and target devices.
//! The bus has a single controller (formerly referred to as the "master"),
//! which initiates all bus operations. All other devices are targets
//! (formerly, insensitively referred to as "slaves"), which may only respond
//! to operations that target their address. The interfaces in this module
//! assume that the MnemOS kernel is running on the device acting as the bus
//! controller.
//! * In order to communicate with a target device, the controller must first
//! send a `START` condition on the bus. When the controller has finished
//! communicating with that device, it will send a `STOP` condition. If the
//! controller completes a read or write operation and wishes to perform
//! additional read or write operations with the same device, it may instead
//! send a repeated `START` condition. Therefore, whether a bus operation
//! should end with a `STOP` or with a `START` depends on whether the user
//! intends to perform additional operations with that device as part of the
//! same transaction. The [`Transaction`] interface in this module allows the
//! user to indicate whether a read or write operation should end the bus
//! transaction. The [`embedded_hal_async::i2c::I2c`] trait also has an
//! [`I2c::transaction`] method, which may be used to perform multiple read
//! and write operations within the same transaction.
//!
//! ## Usage
//!
//! Users of the I²C bus will primarily interact with this module
//! using the [`I2cClient`] type, which implements a client for the
//! [`I2cService`] service. This client type can be used to perform read and
//! write operations on the I²C bus. A new client can be acquired
//! using [`I2cClient::from_registry`].
//!
//! Once an [`I2cClient`] has been obtained, it can be used to perform
//! I²C operations. Two interfaces are available: an
//! [implementation][impl-i2c] of the [`embedded_hal_async::i2c::I2c`] trait,
//! and a lower-level interface using the [`I2cClient::start_transaction`]
//! method. In general, the [`embedded_hal_async::i2c::I2c`] trait is the
//! recommended interface.
//!
//! The lower-level interface allows reusing the same heap-allocated buffer for
//! multiple I²C bus transactions. It also provides the ability to
//! interleave other code between the write and read operations of an
//! I²C transaction without sending a STOP condition. If either of
//! these are necessary, the [`Transaction`] interface may be preferred over the
//! [`embedded_hal_async`] interface.
//!
//! ### On Buffer Reuse
//!
//! Because of mnemOS' message-passing design, the [`I2cService`] operates
//! with owned buffers, rather than borrowed buffers, so a [`FixedVec`]`<u8>` is
//! used as the buffer type for both read and write operations. This means
//! that we must allocate when performing I²C operations. To
//! reduce the amount of allocation necessary, all [`Transaction`] methods
//! return the buffer that was passed in, allowing the buffer to be reused
//! for multiple operations.
//!
//! To facilitate this, the [`Transaction::read`] method also takes a
//! `len` parameter indicating the actual number of bytes to read into
//! the buffer, rather than always filling the entire buffer with
//! bytes. This way, we can size the buffer to the largest buffer
//! required for a sequence of operations, but perform smaller reads and
//! writes using the same [`FixedVec`]`<u8>`, avoiding reallocations.
//! The implementation of [`embedded_hal_async::i2c::I2c::transaction`]
//! will allocate a single buffer large enough for the largest operation
//! in the transaction, and reuse that buffer for every operation within
//! the transaction.
//!
//! Note that the [`Transaction::write`] method does *not* need to take a `len`
//! parameter, and will always write all bytes currently in the buffer. The
//! `len` parameter is only needed for [`Transaction::read`], because reads are
//! limited by the buffer's *total capacity*, rather than the current length of
//! the initialized portion.
//!
//! [RP2040 datasheet]: https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
//! [impl-i2c]: I2cClient#impl-I2c<u8>-for-I2cClient
//! [`I2c::transaction`]: embedded_hal_async::i2c::I2c::transaction
//! [`FixedVec`]: mnemos_alloc::containers::FixedVec
#![warn(missing_docs)]
use self::messages::*;
use crate::{
comms::{
kchannel::{KChannel, KConsumer, KProducer},
oneshot::{self, Reusable},
},
mnemos_alloc::containers::FixedVec,
registry::{self, known_uuids, Envelope, KernelHandle, RegisteredDriver},
Kernel,
};
use core::{convert::Infallible, fmt};
use embedded_hal_async::i2c::{self, AddressMode};
use uuid::Uuid;
////////////////////////////////////////////////////////////////////////////////
// Service Definition
////////////////////////////////////////////////////////////////////////////////
/// [Service](crate::services) definition for I²C bus drivers.
///
/// See the [module-level documentation](crate::services::i2c) for details on
/// using this service.
pub struct I2cService;
impl RegisteredDriver for I2cService {
type Request = StartTransaction;
type Response = Transaction;
type Error = core::convert::Infallible;
type Hello = ();
type ConnectError = core::convert::Infallible;
const UUID: Uuid = known_uuids::kernel::I2C;
}
////////////////////////////////////////////////////////////////////////////////
// Message and Error Types
////////////////////////////////////////////////////////////////////////////////
/// I²C bus address, in either 7-bit or 10-bit address format.
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum Addr {
/// A 7-bit I²C address.
SevenBit(u8),
/// A 10-bit extended I²C address.
TenBit(u16),
}
/// A transaction on the I²C bus.
///
/// This type represents a transaction consisting of a series of read and write
/// operations to a target device on an I²C bus with a given
/// [`Addr`]. This type is part of a lower-level interface for I²C
/// bus transactions, and is returned by the [`I2cClient::start_transaction`]
/// method.
///
/// Once a [`Transaction`] has been created by [`I2cClient::start_transaction`],
/// data can be written to the target device using the [`Transaction::write`]
/// method, and read from the target device using the [`Transaction::read`]
/// method. Any number of read and write operations may be performed within a
/// `Transaction` until an operation with `end: true` is performed. This
/// completes the transaction.
///
/// While a [`Transaction`] is in progress, the I²C bus is "locked"
/// by the client that is performing that transaction. Other clients calling
/// [`I2cClient::start_transaction`] (or using the
/// [`embedded_hal_async::i2c::I2c`] interface) will wait until the current
/// transaction has completed before beginning their own transactions.
#[must_use = "if a transaction has been started, it should be used to perform bus operations"]
pub struct Transaction {
addr: Addr,
tx: KProducer<Transfer>,
rsp_rx: Reusable<Result<FixedVec<u8>, i2c::ErrorKind>>,
ended: bool,
}
/// Errors returned by the [`I2cService`]
#[derive(Debug)]
pub struct I2cError {
addr: Addr,
kind: ErrorKind,
dir: OpKind,
}
/// Messages used to communicate with an [`I2cService`] implementation.
///
/// The types in this module are primarily used by implementations of the
/// [`I2cService`], and are not relevant to users of the [`I2cClient`]
/// interface.
pub mod messages {
use super::*;
/// Message sent to an [`I2cService`] by an [`I2cClient`] in order to start a
/// new bus [`Transaction`]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct StartTransaction {
/// The address of the target device for this transaction.
pub addr: Addr,
pub(super) capacity: usize,
}
/// An I²C bus transfer within a [`Transaction`].
///
/// This message is sent to the [`I2cService`] by a [`Transaction`] in order
/// to perform an individual bus read or write as part of that transaction.
pub struct Transfer {
/// A buffer to read bytes into (if [`dir`] is [`OpKind::Read`]), or write
/// bytes from (if `dir` is [`OpKind::Write`]).
///
/// If performing a write, this buffer is guaranteed to contain at least
/// [`len`] bytes. The driver is expected to write the contents of this
/// buffer to the I²C bus starting at `buf[0]` and ending at
/// `buf[len - 1]`.
///
/// If performing a read, this buffer is guaranteed to have at least
/// [`len`] [*capacity*] remaining. The driver is expected to read by
/// appending bytes to the end of this buffer until `len` bytes have
/// been appended.
///
/// [`dir`]: #structfield.dir
/// [`len`]: #structfield.len
/// [*capacity*]: mnemos_alloc::containers::FixedVec::capacity
pub buf: FixedVec<u8>,
/// The number of bytes to read or write from [`buf`] in this I²C bus
/// transfer.
///
/// [`buf`]: #structfield.buf
pub len: usize,
/// If `true`, this transfer is the last transfer in the transaction.
///
/// If `end` is `true`, the driver is expected to send a `STOP` condition
/// when the transfer has completed. Otherwise, the driver should send a
/// repeated `START`, as additional transfers will be performed.
///
/// Once the driver has completed a transfer with `end == true`, it is
/// permitted to return errors for any subsequent transfers in the
/// current transaction.
pub end: bool,
/// Whether this is a read ([`OpKind::Read`]) or write
/// ([`OpKind::Write`]) transfer.
pub dir: OpKind,
/// Sender for responses once the transfer has completed.
///
/// Once the driver has completed the transfer, it is required to send
/// back the [`buf`] received in this `Transfer` message if the transfer
/// completed successfully.
///
/// If the transfer was a read, then [`buf`] should contain the bytes read
/// from the I²C bus. If the transfer was a write, buf may
/// contain any data, or be empty.
///
/// If the transfer could not be completed successfully, then the driver
/// must send an [`i2c::ErrorKind`] indicating the cause of the failure,
/// instead.
///
/// [`buf`]: #structfield.buf
pub rsp: oneshot::Sender<Result<FixedVec<u8>, i2c::ErrorKind>>,
}
/// Whether an I²C bus operation is a read or a write.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum OpKind {
/// The operation is a read.
Read,
/// The operation is a write.
Write,
}
}
#[derive(Debug)]
enum ErrorKind {
I2c(i2c::ErrorKind),
NoDriver,
ReadBufTooSmall { len: usize, cap: usize },
AlreadyEnded,
}
////////////////////////////////////////////////////////////////////////////////
// Client Definition
////////////////////////////////////////////////////////////////////////////////
/// A client for the [`I2cService`].
///
/// This type is used to perform I²C bus operations. It is obtained
/// using [`I2cClient::from_registry`] (or
/// [`I2cClient::from_registry_no_retry`]).
///
/// Once an `I2cClient` has been acquired, it may be used to perform
/// I²C operations, either using [its implementation of the
/// `embedded_hal_async` `I2c` trait][impl-i2c], or using the lower-level
/// [`Transaction`] interface returned by [`I2cClient::start_transaction`]. See
/// the documentation for [`embedded_hal_async::i2c::I2c`] for details on that
/// interface, or the [`Transaction`] type for details on using the lower-level
/// transaction interface.
///
/// An `I2cClient` does *not* represent a "lock" on the I²C bus.
/// Multiple `I2cClients` can coexist without preventing each other from
/// performing bus operations. Instead, the bus is locked only while performing
/// a [`Transaction`], or while using the [`I2c::transaction`] method on the
/// [`embedded_hal_async::i2c::I2c` implementation][impl-i2c].
///
/// [impl-i2c]: I2cClient#impl-I2c<u8>-for-I2cClient
/// [`I2c::transaction`]: embedded_hal_async::i2c::I2c::transaction
#[must_use = "an `I2cClient` does nothing if it is not used to perform bus transactions"]
pub struct I2cClient {
handle: KernelHandle<I2cService>,
reply: Reusable<Envelope<Result<Transaction, Infallible>>>,
cached_buf: Option<FixedVec<u8>>,
}
impl I2cClient {
/// Obtain an `I2cClient`
///
/// If the [`I2cService`] hasn't been registered yet, we will retry until it
/// has been registered.
pub async fn from_registry(
kernel: &'static Kernel,
) -> Result<Self, registry::ConnectError<I2cService>> {
let handle = kernel.registry().connect::<I2cService>(()).await?;
Ok(I2cClient {
handle,
reply: Reusable::new_async().await,
cached_buf: None,
})
}
/// Obtain an `I2cClient`
///
/// Does NOT attempt to get an [`I2cService`] handle more than once.
///
/// Prefer [`I2cClient::from_registry`] unless you will not be spawning one
/// around the same time as obtaining a client.
pub async fn from_registry_no_retry(
kernel: &'static Kernel,
) -> Result<Self, registry::ConnectError<I2cService>> {
let handle = kernel.registry().try_connect::<I2cService>(()).await?;
Ok(I2cClient {
handle,
reply: Reusable::new_async().await,
cached_buf: None,
})
}
/// Sets a cached buffer to use for [`embedded_hal_async::i2c::I2c`]
/// transactions.
///
/// If a cached buffer is present, and it is small enough to perform a
/// read/write operation in a transaction, it will be used, rather than
/// allocating a new buffer for that transaction.
pub fn with_cached_buf(self, buf: impl Into<Option<FixedVec<u8>>>) -> Self {
Self {
cached_buf: buf.into(),
..self
}
}
/// Starts an I²C [`Transaction`] with the device at the provided
/// `addr`.
///
/// This method begins a bus transaction with the target device. While the
/// returned [`Transaction`] type is held, other `I2cClients` cannot perform
/// bus operations; the bus is released when the [`Transaction`] is dropped.
///
/// After starting a [`Transaction`], the [`Transaction::read`] and
/// [`Transaction::write`] methods are used to write to and read from the
/// target I²C device. See the [`Transaction`] type's
/// documentation for more information on how to use it.
pub async fn start_transaction(&mut self, addr: Addr) -> Transaction {
let resp = self
.handle
.request_oneshot(StartTransaction { addr, capacity: 2 }, &self.reply)
.await
.unwrap();
resp.body.expect("transaction should be created")
}
}
impl i2c::ErrorType for I2cClient {
type Error = I2cError;
}
impl<A> i2c::I2c<A> for I2cClient
where
A: AddressMode,
Addr: From<A>,
{
async fn transaction(
&mut self,
address: A,
operations: &mut [i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let (mut buf, was_cached) = match self.cached_buf.take() {
Some(buf) => (buf, true),
None => {
// determine the maximum size operation to allocate a buffer for the
// transaction.
let len = operations
.iter()
.map(|op| match op {
i2c::Operation::Read(buf) => buf.len(),
i2c::Operation::Write(buf) => buf.len(),
})
.max();
let buf = FixedVec::new(len.unwrap_or(0)).await;
(buf, false)
}
};
let mut txn = self.start_transaction(address.into()).await;
let n_ops = operations.len();
for (n, op) in operations.iter_mut().enumerate() {
let end = n == n_ops - 1;
tracing::trace!(n, n_ops, ?op, ?end);
buf.clear();
match op {
i2c::Operation::Read(dest) => {
let len = dest.len();
let op_buf = if len <= buf.capacity() {
buf
} else {
FixedVec::new(len).await
};
let read = txn.read(op_buf, len, end).await?;
dest.copy_from_slice(read.as_slice());
buf = read;
}
i2c::Operation::Write(src) => {
let op_buf = match buf.try_extend_from_slice(src) {
Ok(_) => buf,
Err(_) => {
let mut buf = FixedVec::new(src.len()).await;
buf.try_extend_from_slice(src)
.expect("we just allocated a buffer that was long enough!");
buf
}
};
let write = txn.write(op_buf, end).await?;
buf = write;
}
}
}
if was_cached {
self.cached_buf = Some(buf);
}
Ok(())
}
}
// === impl Transaction ===
impl Transaction {
/// Constructs a new `Transaction` from the provided [`StartTransaction`]
/// message, returning the `Transaction` and a [`KConsumer`] for receiving
/// [`Transfer`]s within that `Transaction`.
///
/// This is intended to be used by server implementations of the
/// [`I2cService`] when handling [`StartTransaction`] messages.
pub async fn new(
StartTransaction { addr, capacity }: StartTransaction,
) -> (Self, KConsumer<Transfer>) {
let (tx, rx) = KChannel::new_async(capacity).await.split();
let rsp_rx = Reusable::new_async().await;
let txn = Transaction {
addr,
rsp_rx,
tx,
ended: false,
};
(txn, rx)
}
/// Read `len` bytes from the I²C bus into `buf`.
///
/// Note that, rather than always filling the entire buffer, this method
/// takes a `len` argument which specifies the number of bytes to read. This
/// is intended to allow callers to reuse the same [`FixedVec`] for multiple
/// `read` and [`write`](Self::write) operations.
///
/// # Arguments
///
/// - `buf`: a [`FixedVec`] buffer into which bytes read from the
/// I²C bus will be written
/// - `len`: the number of bytes to read. This must be less than or equal to
/// `buf.len()`.
/// - `end`: whether or not to end the transaction. If this is `true`, a
/// `STOP` condition will be sent on the bus once `len` bytes have been
/// read. If this is `false`, a repeated `START` condition will be sent on
/// the bus once `len` bytes have been read.
///
/// # Errors
///
/// - If an error occurs performing the I²C bus transaction.
/// - If `len` is greater than [`buf.capacity()`] - [`buf.len()`].
/// - If there is no [`I2cService`] running.
///
/// # Cancelation Safety
///
/// If this future is dropped, the underlying I²C bus read
/// operation may still be performed.
///
/// [`FixedVec`]: mnemos_alloc::containers::FixedVec
/// [`buf.len()`]: mnemos_alloc::containers::FixedVec::len
/// [`buf.capacity()`]: mnemos_alloc::containers::FixedVec::capacity
pub async fn read(
&mut self,
buf: FixedVec<u8>,
len: usize,
end: bool,
) -> Result<FixedVec<u8>, I2cError> {
// if there's already data in the buffer, the available capacity is the
// total capacity minus the length of the existing data.
let cap = buf.capacity() - buf.len();
if cap < len {
return Err(self.buf_too_small(OpKind::Read, len, cap));
}
self.xfer(buf, len, end, OpKind::Read).await
}
/// Write bytes from `buf` to the I²C.
///
///
/// # Arguments
///
/// - `buf`: a [`FixedVec`] buffer containing the bytes to write to the I²C bus.
/// - `end`: whether or not to end the transaction. If this is `true`, a
/// `STOP` condition will be sent on the bus once the entire buffer has
/// been sent. If this is `false`, a repeated `START` condition will be
/// sent on the bus once the entire buffer has been written.
///
/// # Errors
///
/// - If an error occurs performing the I²C bus transaction.
/// - If there is no [`I2cService`] running.
///
/// # Cancelation Safety
///
/// If this future is dropped, the underlying I²C bus write
/// operation may still be performed.
///
/// [`FixedVec`]: mnemos_alloc::containers::FixedVec
/// [`buf.len()`]: mnemos_alloc::containers::FixedVec::len
pub async fn write(&mut self, buf: FixedVec<u8>, end: bool) -> Result<FixedVec<u8>, I2cError> {
let len = buf.len();
self.xfer(buf, len, end, OpKind::Write).await
}
async fn xfer(
&mut self,
buf: FixedVec<u8>,
len: usize,
end: bool,
dir: OpKind,
) -> Result<FixedVec<u8>, I2cError> {
if self.ended {
return Err(I2cError {
dir,
addr: self.addr,
kind: ErrorKind::AlreadyEnded,
});
} else {
self.ended = end;
}
let rsp = self
.rsp_rx
.sender()
.await
.expect("sender should not be in use");
let xfer = Transfer {
buf,
len,
end,
rsp,
dir,
};
self.tx
.enqueue_async(xfer)
.await
.map_err(self.mk_no_driver_err(dir))?;
self.rsp_rx
.receive()
.await
.map_err(self.mk_no_driver_err(dir))?
.map_err(self.mk_err(dir))
}
}
// TODO(eliza): if we properly implement close-on-drop behavior for KProducers,
// we can remove this...
impl Drop for Transaction {
fn drop(&mut self) {
self.tx.close();
}
}
// === impl Addr ===
impl fmt::Debug for Addr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Addr::SevenBit(addr) => write!(f, "SevenBit(0x{addr:02x})"),
Addr::TenBit(addr) => write!(f, "TenBit(0x{addr:04x})"),
}
}
}
impl Addr {
/// Returns the low 7 bits of this address.
#[must_use]
pub fn low_bits(self) -> u8 {
match self {
Self::SevenBit(bits) => bits,
Self::TenBit(bits) => (bits & 0b0111_1111) as u8,
}
}
}
impl From<i2c::SevenBitAddress> for Addr {
#[inline]
#[must_use]
fn from(addr: i2c::SevenBitAddress) -> Self {
Addr::SevenBit(addr)
}
}
impl From<i2c::TenBitAddress> for Addr {
#[inline]
#[must_use]
fn from(addr: i2c::TenBitAddress) -> Self {
Addr::TenBit(addr)
}
}
// === impl I2cError ===
impl I2cError {
/// Constructs a new `I2cError` from an
/// [`embedded_hal_async::i2c::ErrorKind`].
///
/// This method is intended to be used by implementations of the
/// [`I2cService`] when they encounter an error performing an I²C
/// operation.
#[must_use]
pub fn new(addr: Addr, kind: i2c::ErrorKind, dir: OpKind) -> Self {
Self {
addr,
kind: ErrorKind::I2c(kind),
dir,
}
}
/// Returns whether this error occurred while performing an I²C
/// [`read`](Transaction::read) or [`write`](Transaction::write) operation.
#[inline]
#[must_use]
pub fn operation(&self) -> OpKind {
self.dir
}
/// Returns `true` if this `I2cError` represents an invalid use of the
/// [`I2cClient`]/[`Transaction`] APIs.
///
/// User errors include:
///
/// - Attempting to read or write after performing a read or write operation
/// with `end: true`, ending the transaction.
/// - Attempting to read or write with a buffer that is too small for the
/// desired read/write operation.
#[must_use]
#[inline]
pub fn is_user_error(&self) -> bool {
matches!(
self.kind,
ErrorKind::ReadBufTooSmall { .. } | ErrorKind::AlreadyEnded
)
}
}
impl Transaction {
fn buf_too_small(&self, dir: OpKind, len: usize, buf: usize) -> I2cError {
I2cError {
addr: self.addr,
kind: ErrorKind::ReadBufTooSmall { len, cap: buf },
dir,
}
}
fn mk_err(&self, dir: OpKind) -> impl Fn(i2c::ErrorKind) -> I2cError {
let addr = self.addr;
move |kind| I2cError {
addr,
kind: ErrorKind::I2c(kind),
dir,
}
}
fn mk_no_driver_err<E>(&self, dir: OpKind) -> impl Fn(E) -> I2cError {
let addr = self.addr;
move |_| I2cError {
addr,
dir,
kind: ErrorKind::NoDriver,
}
}
}
impl fmt::Display for I2cError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let Self { addr, kind, dir } = self;
let verb = match dir {
OpKind::Read => "reading from",
OpKind::Write => "writing to",
};
write!(f, "I2C error {verb} {addr:?}: ")?;
match kind {
ErrorKind::I2c(kind) => kind.fmt(f),
ErrorKind::NoDriver => "no driver task running".fmt(f),
ErrorKind::AlreadyEnded => {
"this transaction has already ended. start a new transaction.".fmt(f)
}
ErrorKind::ReadBufTooSmall { len, cap } => write!(
f,
"remaining buffer capacity ({cap}B) too small for desired read length ({len}B)"
),
}
}
}
impl i2c::Error for I2cError {
fn kind(&self) -> i2c::ErrorKind {
match self.kind {
ErrorKind::I2c(kind) => kind,
_ => i2c::ErrorKind::Other,
}
}
}