1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
use crate::{
loom::{
cell::{MutPtr, UnsafeCell},
sync::atomic::{AtomicBool, Ordering::*},
},
util::{fmt, Backoff},
};
use core::ops::{Deref, DerefMut};
/// A spinlock-based mutual exclusion lock for protecting shared data
///
/// This mutex will spin with an exponential backoff while waiting for the lock
/// to become available. Each mutex has a type parameter which represents
/// the data that it is protecting. The data can only be accessed through the
/// RAII guards returned from [`lock`] and [`try_lock`], which guarantees that
/// the data is only ever accessed when the mutex is locked.
///
/// # Fairness
///
/// This is *not* a fair mutex.
///
/// # Loom-specific behavior
///
/// When `cfg(loom)` is enabled, this mutex will use Loom's simulated atomics,
/// checked `UnsafeCell`, and simulated spin loop hints.
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
pub struct Mutex<T> {
locked: AtomicBool,
data: UnsafeCell<T>,
}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused, the `Mutex` will immediately unlock"]
pub struct MutexGuard<'a, T> {
ptr: MutPtr<T>,
locked: &'a AtomicBool,
}
impl<T> Mutex<T> {
loom_const_fn! {
/// Returns a new `Mutex` protecting the provided `data`.
///
/// The returned `Mutex` is in an unlocked state, ready for use.
///
/// # Examples
///
/// ```
/// use maitake_sync::spin::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
#[must_use]
pub fn new(data: T) -> Self {
Self {
locked: AtomicBool::new(false),
data: UnsafeCell::new(data),
}
}
}
/// Attempts to acquire this lock without spinning
///
/// If the lock could not be acquired at this time, then [`None`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function will never spin.
#[must_use]
#[cfg_attr(test, track_caller)]
pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
if test_dbg!(self
.locked
.compare_exchange(false, true, Acquire, Acquire)
.is_ok())
{
Some(MutexGuard {
ptr: self.data.get_mut(),
locked: &self.locked,
})
} else {
None
}
}
/// Acquires a mutex, spinning until it is locked.
///
/// This function will spin until the mutex is available to lock. Upon
/// returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
#[cfg_attr(test, track_caller)]
pub fn lock(&self) -> MutexGuard<'_, T> {
let mut boff = Backoff::default();
while test_dbg!(self
.locked
.compare_exchange(false, true, Acquire, Acquire)
.is_err())
{
while test_dbg!(self.locked.load(Relaxed)) {
boff.spin();
}
}
MutexGuard {
ptr: self.data.get_mut(),
locked: &self.locked,
}
}
/// Forcibly unlock the mutex.
///
/// If a lock is currently held, it will be released, regardless of who's
/// holding it. Of course, this is **outrageously, disgustingly unsafe** and
/// you should never do it.
///
/// # Safety
///
/// This deliberately violates mutual exclusion.
///
/// Only call this method when it is _guaranteed_ that no stack frame that
/// has previously locked the mutex will ever continue executing.
/// Essentially, this is only okay to call when the kernel is oopsing and
/// all code running on other cores has already been killed.
pub unsafe fn force_unlock(&self) {
self.locked.store(false, Release);
}
/// Consumes this `Mutex`, returning the guarded data.
#[inline]
#[must_use]
pub fn into_inner(self) -> T {
self.data.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// let mut lock = maitake_sync::spin::Mutex::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.lock(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe {
// Safety: since this call borrows the `Mutex` mutably, no actual
// locking needs to take place -- the mutable borrow statically
// guarantees no locks exist.
self.data.with_mut(|data| &mut *data)
}
}
}
impl<T: Default> Default for Mutex<T> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Mutex")
.field("data", &fmt::opt(&self.try_lock()).or_else("<locked>"))
.finish()
}
}
unsafe impl<T: Send> Send for Mutex<T> {}
unsafe impl<T: Send> Sync for Mutex<T> {}
// === impl MutexGuard ===
impl<'a, T> Deref for MutexGuard<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe {
// Safety: we are holding the lock, so it is okay to dereference the
// mut pointer.
&*self.ptr.deref()
}
}
}
impl<'a, T> DerefMut for MutexGuard<'a, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
// Safety: we are holding the lock, so it is okay to dereference the
// mut pointer.
self.ptr.deref()
}
}
}
impl<'a, T, R: ?Sized> AsRef<R> for MutexGuard<'a, T>
where
T: AsRef<R>,
{
#[inline]
fn as_ref(&self) -> &R {
self.deref().as_ref()
}
}
impl<'a, T, R: ?Sized> AsMut<R> for MutexGuard<'a, T>
where
T: AsMut<R>,
{
#[inline]
fn as_mut(&mut self) -> &mut R {
self.deref_mut().as_mut()
}
}
impl<'a, T> Drop for MutexGuard<'a, T> {
fn drop(&mut self) {
test_dbg!(self.locked.store(false, Release));
}
}
impl<'a, T: fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.deref().fmt(f)
}
}
impl<'a, T: fmt::Display> fmt::Display for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.deref().fmt(f)
}
}
#[cfg(test)]
mod tests {
use crate::loom::{self, thread};
use std::prelude::v1::*;
use std::sync::Arc;
use super::*;
#[test]
fn multithreaded() {
loom::model(|| {
let mutex = Arc::new(Mutex::new(String::new()));
let mutex2 = mutex.clone();
let t1 = thread::spawn(move || {
tracing::info!("t1: locking...");
let mut lock = mutex2.lock();
tracing::info!("t1: locked");
lock.push_str("bbbbb");
tracing::info!("t1: dropping...");
});
{
tracing::info!("t2: locking...");
let mut lock = mutex.lock();
tracing::info!("t2: locked");
lock.push_str("bbbbb");
tracing::info!("t2: dropping...");
}
t1.join().unwrap();
});
}
#[test]
fn try_lock() {
loom::model(|| {
let mutex = Mutex::new(42);
// First lock succeeds
let a = mutex.try_lock();
assert_eq!(a.as_ref().map(|r| **r), Some(42));
// Additional lock failes
let b = mutex.try_lock();
assert!(b.is_none());
// After dropping lock, it succeeds again
::core::mem::drop(a);
let c = mutex.try_lock();
assert_eq!(c.as_ref().map(|r| **r), Some(42));
});
}
}