1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
//! The mnemos-alloc Heap types
use core::{
alloc::{GlobalAlloc, Layout},
hint,
ptr::{null_mut, NonNull},
};
use linked_list_allocator::Heap;
use maitake::sync::{Mutex, WaitQueue};
#[cfg(feature = "stats")]
use portable_atomic::AtomicU16;
use portable_atomic::{AtomicBool, AtomicUsize, Ordering::*};
/// # Mnemos Allocator
///
/// This is a wrapper type over an implementor of [UnderlyingAllocator].
///
/// This "inherits" any of the behaviors and safety requirements of the
/// chosen [UnderlyingAllocator], and in addition has two major special
/// behaviors that are intended to help respond gracefully to ephemeral
/// Out of Memory conditions
///
/// * On **alloc**:
/// * We check whether allocation is inhibited. If it is - a nullptr
/// is returned, regardless of whether there is sufficient room to
/// allocate the requested amount.
/// * If we are NOT inhibited, but are now out of memory (the underlying
/// allocator returned a nullptr), we inhibit further allocations until
/// the next deallocation occurs
/// * On **dealloc**:
/// * The "inhibit allocations" flag is cleared
/// * If any tasks are waiting on the "OOM" queue, they are ALL awoken if
/// the inhibit flag was previously set
///
/// These two details are intended to allow the "async allocation aware" types
/// defined in [crate::containers] to yield if allocation is not currently possible.
///
/// By wrapping the [UnderlyingAllocator], we allow non-async-aware allocations
/// (like those through [alloc::alloc::alloc()] or [alloc::alloc::dealloc()]) to
/// trigger these behaviors. However, non-async-aware allocations are still subject
/// to normal OOM handling, which typically means panicking.
pub struct MnemosAlloc<U> {
allocator: U,
/// The total size of the heap, in bytes.
heap_size: AtomicUsize,
/// Tracks heap statistics.
#[cfg(feature = "stats")]
stats: stats::Stats,
}
/// Errors returned by [`MnemosAlloc::init`].
#[derive(Debug, Eq, PartialEq)]
#[non_exhaustive]
pub enum InitError {
/// The heap has already been initialized.
AlreadyInitialized,
}
#[cfg(feature = "stats")]
pub use self::stats::State;
impl<U: UnderlyingAllocator> Default for MnemosAlloc<U> {
fn default() -> Self {
Self::new()
}
}
impl<U: UnderlyingAllocator> MnemosAlloc<U> {
const INITIALIZING: usize = usize::MAX;
pub const fn new() -> Self {
Self {
allocator: U::INIT,
heap_size: AtomicUsize::new(0),
#[cfg(feature = "stats")]
stats: stats::Stats::new(),
}
}
/// Initialize the allocator, with a heap of size `len` starting at `start`.
///
/// # Returns
///
/// - [`Ok`]`(())` if the heap was successfully initialized.
/// - [`Err`]`(`[`InitError::AlreadyInitialized`]`)` if this method has
/// already been called to initialize the heap.
///
/// # Safety
///
/// This function requires the caller to uphold the following invariants:
///
/// - The memory region starting at `start` and ending at `start + len` may
/// not be accessed except through pointers returned by this allocator.
/// - The end of the memory region (`start + len`) may not exceed the
/// physical memory available on the device.
/// - The memory region must not contain memory regions used for
/// memory-mapped IO.
pub unsafe fn init(&self, start: NonNull<u8>, len: usize) -> Result<(), InitError> {
match self
.heap_size
.compare_exchange(0, Self::INITIALIZING, AcqRel, Acquire)
{
// another CPU core is initializing the heap, so we must wait until
// it has been initialized, to prevent this core from trying to use
// the heap.
Err(val) if val == Self::INITIALIZING => {
while self.heap_size.load(Acquire) == Self::INITIALIZING {
hint::spin_loop();
}
return Err(InitError::AlreadyInitialized);
}
// the heap has already been initialized, so we return an error. it
// can now safely be used by this thread.
Err(_) => return Err(InitError::AlreadyInitialized),
// we can now initialize the heap!
Ok(_) => {}
}
// actually initialize the heap
self.allocator.init(start, len);
self.heap_size.compare_exchange(Self::INITIALIZING, len, AcqRel, Acquire)
.expect("if we changed the heap state to INITIALIZING, no other CPU core should have changed its state");
Ok(())
}
/// Returns the total size of the heap in bytes, including allocated space.
///
/// The current free space remaining can be calculated by subtracting this
/// value from [`self.allocated_size()`].
#[must_use]
pub fn total_size(&self) -> usize {
self.heap_size.load(Acquire)
}
}
unsafe impl<U: UnderlyingAllocator> GlobalAlloc for MnemosAlloc<U> {
#[inline(always)]
unsafe fn alloc(&self, layout: core::alloc::Layout) -> *mut u8 {
if INHIBIT_ALLOC.load(Acquire) {
return null_mut();
}
#[cfg(feature = "stats")]
let _allocating = stats::start_context(&self.stats.allocating);
let ptr = self.allocator.alloc(layout);
if ptr.is_null() {
INHIBIT_ALLOC.store(true, Release);
#[cfg(feature = "stats")]
{
self.stats.alloc_oom_count.fetch_add(1, Release);
}
} else {
#[cfg(feature = "stats")]
{
self.stats.allocated.fetch_add(layout.size(), Release);
self.stats.alloc_success_count.fetch_add(1, Release);
}
}
ptr
}
#[inline]
unsafe fn dealloc(&self, ptr: *mut u8, layout: core::alloc::Layout) {
#[cfg(feature = "stats")]
let _allocating = stats::start_context(&self.stats.deallocating);
self.allocator.dealloc(ptr, layout);
#[cfg(feature = "stats")]
{
self.stats.allocated.fetch_sub(layout.size(), Release);
self.stats.dealloc_count.fetch_add(1, Release);
}
let was_inhib = INHIBIT_ALLOC.swap(false, AcqRel);
if was_inhib {
OOM_WAITER.wake_all();
}
}
}
/// A [WaitQueue] for tasks that would like to allocate, but the allocator is
/// currently in temporary OOM mode
static OOM_WAITER: WaitQueue = WaitQueue::new();
/// Flag to inhibit allocs. This ensures that allocations are served in a FIFO
/// order, so if there are 50 bytes left, then we get a sequence of alloc requests
/// like [64, 10, 30], none will be served until there is room for 64. This prevents
/// large allocations from being starved, at the cost of delaying small allocations
/// that *could* potentially succeed
static INHIBIT_ALLOC: AtomicBool = AtomicBool::new(false);
/// Asynchronously allocate with the given [Layout].
///
/// Analogous to [alloc::alloc::alloc()], but will never return a null pointer,
/// and will instead yield until allocation succeeds (which could theoretically
/// be never).
pub async fn alloc(layout: Layout) -> NonNull<u8> {
loop {
unsafe {
match NonNull::new(alloc::alloc::alloc(layout)) {
Some(nn) => return nn,
None => {
let _ = OOM_WAITER.wait().await;
continue;
}
}
}
}
}
/// Immediately deallocate the given ptr + [Layout]
///
/// # Safety
///
/// This has the same safety invariants as [alloc::alloc::dealloc()].
#[inline(always)]
pub unsafe fn dealloc(ptr: *mut u8, layout: Layout) {
alloc::alloc::dealloc(ptr, layout)
}
/// "Underlying Allocator"" Trait
///
/// This trait serves to abstract over a general purpose [GlobalAlloc] implementation,
/// and allows `mnemos-alloc` to do "the right thing" when it comes to the async wrapper
/// types when used with any allocator.
///
/// [UnderlyingAllocator::alloc()] and [UnderlyingAllocator::dealloc()] must be implemented.
/// [UnderlyingAllocator::init()] may or may not be necessary, depending on your allocator.
///
/// ## Features
///
/// When the "use-std" feature of this crate is active, an implementation of
/// [UnderlyingAllocator] is provided for `std::alloc::System`.
pub trait UnderlyingAllocator {
/// A constant initializer of the allocator.
///
/// May or may not require a call to [UnderlyingAllocator::init()] before the allocator
/// is actually ready for use.
const INIT: Self;
/// Initialize the allocator, if it is necessary to populate with a region
/// of memory.
///
/// # Safety
///
/// This function requires the caller to uphold the following invariants:
///
/// - The memory region starting at `start` and ending at `start + len` may
/// not be accessed except through pointers returned by this allocator.
/// - The end of the memory region (`start + len`) may not exceed the
/// physical memory available on the device.
/// - The memory region must not contain memory regions used for
/// memory-mapped IO.
unsafe fn init(&self, start: NonNull<u8>, len: usize);
/// Allocate a region of memory
///
/// # Safety
///
/// The same as [GlobalAlloc::alloc()].
unsafe fn alloc(&self, layout: core::alloc::Layout) -> *mut u8;
/// Deallocate a region of memory
///
/// # Safety
///
/// The same as [GlobalAlloc::dealloc()].
unsafe fn dealloc(&self, ptr: *mut u8, layout: core::alloc::Layout);
}
/// A wrapper of [linked_list_allocator::Heap] that uses [maitake::sync::Mutex].
///
/// This should ONLY be used in a single threaded context, which also includes
/// NOT using it in interrupts.
///
/// If an allocation is attempted while the mutex is locked (e.g. we are pre-empted
/// by a thread/interrupt), this allocator will panic.
///
/// This allocator MUST be initialized with a call to [SingleThreadedLinkedListAllocator::init()]
/// before any allocations will succeed
#[allow(dead_code)]
pub struct SingleThreadedLinkedListAllocator {
mlla: Mutex<Heap>,
}
impl UnderlyingAllocator for SingleThreadedLinkedListAllocator {
// This constant is used as an initializer, so the interior mutability is
// not an issue.
#[allow(clippy::declare_interior_mutable_const)]
const INIT: Self = SingleThreadedLinkedListAllocator {
mlla: Mutex::new(Heap::empty()),
};
#[inline]
unsafe fn init(&self, start: NonNull<u8>, len: usize) {
let mut heap = self.mlla.try_lock().unwrap();
assert!(heap.size() == 0, "Already initialized the heap");
heap.init(start.as_ptr(), len);
}
#[inline]
unsafe fn alloc(&self, layout: core::alloc::Layout) -> *mut u8 {
let mut heap = self.mlla.try_lock().unwrap();
heap.allocate_first_fit(layout)
.ok()
.map_or(core::ptr::null_mut(), |allocation| allocation.as_ptr())
}
#[inline]
unsafe fn dealloc(&self, ptr: *mut u8, layout: core::alloc::Layout) {
match NonNull::new(ptr) {
Some(nn) => {
let mut heap = self.mlla.try_lock().unwrap();
heap.deallocate(nn, layout);
}
None => {
debug_assert!(false, "Deallocating a null?")
}
}
}
}
#[cfg(feature = "use-std")]
impl UnderlyingAllocator for std::alloc::System {
const INIT: Self = std::alloc::System;
unsafe fn init(&self, _start: NonNull<u8>, _len: usize) {
panic!("Don't initialize the system allocator.");
}
unsafe fn alloc(&self, layout: core::alloc::Layout) -> *mut u8 {
<std::alloc::System as GlobalAlloc>::alloc(self, layout)
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: core::alloc::Layout) {
<std::alloc::System as GlobalAlloc>::dealloc(self, ptr, layout)
}
}
#[cfg(feature = "stats")]
mod stats {
use super::*;
#[derive(Debug)]
#[cfg(feature = "stats")]
pub(super) struct Stats {
/// The total amount of memory currently allocated, in bytes.
pub(super) allocated: AtomicUsize,
/// A count of heap allocation attempts that have been completed
/// successfully.
pub(super) alloc_success_count: AtomicUsize,
/// A count of heap allocation attempts that have failed because the heap
/// was at capacity.
pub(super) alloc_oom_count: AtomicUsize,
/// A count of the number of times an allocation has been deallocated.
pub(super) dealloc_count: AtomicUsize,
/// A count of the total number of current allocation attempts.
pub(super) allocating: AtomicU16,
/// A count of the total number of current deallocation attempts.
pub(super) deallocating: AtomicU16,
}
/// A snapshot of the current state of the heap.
#[derive(Debug, Copy, Clone)]
#[non_exhaustive]
pub struct State {
/// A count of the total number of concurrently executing calls to
/// [`alloc()`].
///
/// If this is 0, no CPU cores are currently allocating.
pub allocating: u16,
/// A count of the total number of concurrently executing calls to
/// [`dealloc()`].
///
/// If this is 0, no CPU cores are currently allocating.
pub deallocating: u16,
/// If this is `true`, an allocation request could not be satisfied
/// because there was insufficient memory. That allocation request may
/// be queued.
pub is_oom: bool,
/// The total size of the heap, in bytes. This includes memory
/// that is currently allocated.
pub total_bytes: usize,
/// The amount of memory currently allocated, in bytes.
pub allocated_bytes: usize,
/// The total number of times an allocation attempt has
/// succeeded, over the lifetime of this heap.
pub alloc_success_count: usize,
/// The total number of times an allocation attempt could not be
/// fulfilled because there was insufficient space, over the lifetime of
/// this heap.
pub alloc_oom_count: usize,
/// The total number of times an allocation has been freed, over the
/// lifetime of this heap.
pub dealloc_count: usize,
}
impl<U> MnemosAlloc<U> {
/// Returns a snapshot of the current state of the heap.
///
/// This returns a struct containing all available heap metrics at the
/// current point in time. It permits calculating derived metrics, such
/// as [`State::free_bytes`], [`State::alloc_attempt_count`], and
/// [`State::live_alloc_count`], which are calculated using the values
/// of other heap statistics.
///
/// Taking a single snapshot ensures that no drift occurs between these
/// metrics. For example, if we were to call
/// [`Self::alloc_success_count()`], and then later attempt to calculate
/// the number of live allocations by subtracting the value of
/// [`Self::dealloc_count()`] from a subsequent call to
/// [`Self::alloc_success_count()`], additional concurrent allocations
/// may have occurred between the first time the success count was
/// loaded and the second. Taking one snapshot of all metrics ensures
/// that no drift occurs, because the snapshot contains all heap metrics
/// at the current point in time.
#[must_use]
#[inline]
pub fn state(&self) -> State {
State {
allocating: self.stats.allocating.load(Acquire),
deallocating: self.stats.deallocating.load(Acquire),
is_oom: INHIBIT_ALLOC.load(Acquire),
total_bytes: self.total_bytes(),
allocated_bytes: self.allocated_bytes(),
alloc_success_count: self.alloc_success_count(),
alloc_oom_count: self.alloc_oom_count(),
dealloc_count: self.dealloc_count(),
}
}
/// Returns the total amount of memory currently allocated, in bytes.
#[must_use]
#[inline]
pub fn allocated_bytes(&self) -> usize {
self.stats.allocated.load(Acquire)
}
/// Returns the total size of the heap, in bytes. This includes memory
/// that is currently allocated.
#[must_use]
#[inline]
pub fn total_bytes(&self) -> usize {
self.heap_size.load(Acquire)
}
/// Returns the total number of times an allocation attempt has
/// succeeded, over the lifetime of this heap.
#[must_use]
#[inline]
pub fn alloc_success_count(&self) -> usize {
self.stats.alloc_success_count.load(Acquire)
}
/// Returns the total number of times an allocation attempt could not be
/// fulfilled because there was insufficient space, over the lifetime of
/// this heap.
#[must_use]
#[inline]
pub fn alloc_oom_count(&self) -> usize {
self.stats.alloc_oom_count.load(Acquire)
}
/// Returns the total number of times an allocation has been
/// deallocated, over the lifetime of this heap.
#[must_use]
#[inline]
pub fn dealloc_count(&self) -> usize {
self.stats.dealloc_count.load(Acquire)
}
}
impl State {
/// Returns the current amount of free space in the heap, in bytes.
///
/// This is calculated by subtracting [`self.allocated_bytes`] from
/// [`self.total_bytes`].
#[must_use]
#[inline]
pub fn free_bytes(&self) -> usize {
self.total_bytes - self.allocated_bytes
}
/// Returns the total number of allocation attempts that have been
/// requested from this heap (successes or failures).
///
/// This is the sum of [`self.alloc_success_count`] and
/// [`self.alloc_oom_count`].
#[must_use]
#[inline]
pub fn alloc_attempt_count(&self) -> usize {
self.alloc_success_count + self.alloc_oom_count
}
/// Returns the number of currently "live" allocations at the current
/// point in time.
///
/// This is calculated by subtracting [`self.dealloc_count`] (the number
/// of allocations which have been freed) from
/// [`self.alloc_success_count`] (the total number of allocations).
#[must_use]
#[inline]
pub fn live_alloc_count(&self) -> usize {
self.alloc_success_count - self.dealloc_count
}
}
impl Stats {
pub(super) const fn new() -> Self {
Self {
allocated: AtomicUsize::new(0),
alloc_success_count: AtomicUsize::new(0),
alloc_oom_count: AtomicUsize::new(0),
dealloc_count: AtomicUsize::new(0),
allocating: AtomicU16::new(0),
deallocating: AtomicU16::new(0),
}
}
}
pub(super) fn start_context(counter: &AtomicU16) -> impl Drop + '_ {
counter.fetch_add(1, Release);
DecrementOnDrop(counter)
}
struct DecrementOnDrop<'counter>(&'counter AtomicU16);
impl Drop for DecrementOnDrop<'_> {
fn drop(&mut self) {
self.0.fetch_sub(1, Release);
}
}
}