1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
/// Generates a typed bitfield struct.
///
/// By default, the [`fmt::Debug`], [`fmt::Display`], [`fmt::Binary`], [`Copy`],
/// and [`Clone`] traits are automatically derived for bitfields.
///
/// All bitfield types are [`#[repr(transparent)]`][transparent].
///
/// For a complete example of the methods generated by the `bitfield!` macro,
/// see the [`example`] module's [`ExampleBitfield`] type.
///
/// # Generated Implementations
///
/// The `bitfield!` macro generates a type with the following functions, where
/// `{int}` is the integer type that represents the bitfield (one of [`u8`],
/// [`u16`], [`u32`], [`u64`], [`u128`], or [`usize`]):
///
/// - `const fn new() -> Self`: Returns a new instance of the bitfield type with
/// all bits zeroed.
/// - `const fn from_bits(bits: {int}) -> Self`: Converts an `{int}` into an
/// instance of the bitfield type.
/// - `const fn bits(self) -> {int}`: Returns this bitfield's bits as a raw
/// integer value.
/// - `fn with<U>(self, packer: Self::Packer<U>, value: U) -> Self`: Given one
/// of this type's generated packing specs for a `U`-typed value, and a
/// `U`-typed value, returns a new instance of `Self` with the bit
/// representation of `value` packed into the range represented by `packer`.
/// - `fn set<U>(&mut self, packer: Self::Packer<U>, value: U) -> &mut Self`:
/// Similar to `with`, except `self` is mutated in place, rather than
/// returning a new nstance of `Self`
/// - `fn get<U>(&self, packer: Self::Packer<U>) -> U`: Given one of this type's
/// generated packing specs for a `U`-typed value, unpacks the bit range
/// represented by that value as a `U` and returns it. This method panics if
/// the requested bit range does not contain a valid bit pattern for a
/// `U`-typed value, as determined by `U`'s implementation of the [`FromBits`]
/// trait.
/// - `fn try_get<U>(&self, packer: Self::Packer<U>) -> Result<U, <U as
/// FromBits>::Error>`: Like `get`, but returns a `Result` instead of
/// panicking.
/// - `fn assert_valid()`: Asserts that the generated bitfield type is valid.
/// This is primarily intended to be used in tests; the macro cannot generate
/// tests for a bitfield type on its own, so a test that simply calls
/// `assert_valid` can be added to check the bitfield type's validity.
/// - `fn display_ascii(&self) -> impl core::fmt::Display`: Returns a
/// [`fmt::Display`] implementation that formats the bitfield in a multi-line
/// format, using only ASCII characters. See [here](#example-display-output)
/// for examples of this format.
/// - `fn display_unicode(&self) -> impl core::fmt::Display`: Returns a
/// [`fmt::Display`] implementation that formats the bitfield in a multi-line
/// format, always using Unicode box-drawing characters. See
/// [here](#example-display-output) for examples of this format.
///
/// The visibility of these methods depends on the visibility of the bitfield
/// struct --- if the struct is defined as `pub(crate) struct MyBitfield<u16> {
/// ... }`, then these functions will all be `pub(crate)` as well.
///
/// If a bitfield type is defined with one visibility, but particular subfields
/// of that bitfield should not be public, the individual fields may also have
/// visibility specifiers. For example, if the bitfield struct `MyBitfield` is
/// `pub`, but the subfield named `PRIVATE_SUBFIELD` is `pub(crate)`, then
/// `my_bitfield.get(MyBitfield::PRIVATE_SUBRANGE)` can only be called inside
/// the crate defining the type, because the `PRIVATE_SUBRANGE` constant is not
/// publicly visible.
///
/// In addition to the inherent methods discussed above, the following trait
/// implementations are always generated:
///
/// - [`fmt::Debug`]: The `Debug` implementation prints the bitfield as a
/// "struct", with a "field" for each packing spec in the bitfield. If any
/// of the bitfield's packing specs pack typed values, that type's
/// [`fmt::Debug`] implementation is used rather than printing the value
/// as an integer.
/// - [`fmt::Binary`]: Prints the raw bits of this bitfield as a binary number.
/// - [`fmt::UpperHex`] and [`fmt::LowerHex`]: Prints the raw bits of this
/// bitfield in hexadecimal.
/// - [`fmt::Display`]: Pretty-prints the bitfield in a very nice-looking
/// multi-line format which I'm rather proud of. See
/// [here](#example-display-output) for examples of this format.
/// - [`Copy`]: Behaves identically as the [`Copy`] implementation for the
/// underlying integer type.
/// - [`Clone`]: Behaves identically as the [`Clone`] implementation for the
/// underlying integer type.
/// - [`From`]`<{int}> for Self`: Converts a raw integer value into an instance
/// of the bitfield type. This is equivalent to calling the bitfield type's
/// `from_bits` function.
/// - [`From`]`<Self> for {int}`: Converts an instance of the bitfield type into
/// a raw integer value. This is equivalent to calling the bitfield type's
/// `bits` method.
///
/// Additional traits may be derived for the bitfield type, such as
/// [`PartialEq`], [`Eq`], and [`Default`]. These traits are not automatically
/// derived, as custom implementations may also be desired, depending on the
/// use-case. For example, the `Default` value for a bitfield may _not_ be all
/// zeroes.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// mycelium_bitfield::bitfield! {
/// /// Bitfield types can have doc comments.
/// #[derive(Eq, PartialEq)] // ...and attributes
/// pub struct MyBitfield<u16> {
/// // Generates a packing spec named `HELLO` for the first 6
/// // least-significant bits.
/// pub const HELLO = 6;
/// // Fields with names starting with `_` can be used to mark bits as
/// // reserved.
/// const _RESERVED = 4;
/// // Generates a packing spec named `WORLD` for the next 3 bits.
/// pub const WORLD = 3;
/// }
/// }
///
/// // Bitfield types can be cheaply constructed from a raw numeric
/// // representation:
/// let bitfield = MyBitfield::from_bits(0b10100_0011_0101);
///
/// // `get` methods can be used to unpack fields from a bitfield type:
/// assert_eq!(bitfield.get(MyBitfield::HELLO), 0b11_0101);
/// assert_eq!(bitfield.get(MyBitfield::WORLD), 0b0101);
///
/// // `with` methods can be used to pack bits into a bitfield type by
/// // value:
/// let bitfield2 = MyBitfield::new()
/// .with(MyBitfield::HELLO, 0b11_0101)
/// .with(MyBitfield::WORLD, 0b0101);
///
/// assert_eq!(bitfield, bitfield2);
///
/// // `set` methods can be used to mutate a bitfield type in place:
/// let mut bitfield3 = MyBitfield::new();
///
/// bitfield3
/// .set(MyBitfield::HELLO, 0b011_0101)
/// .set(MyBitfield::WORLD, 0b0101);
///
/// assert_eq!(bitfield, bitfield3);
/// ```
///
/// Bitfields may also contain typed values, as long as those values implement
/// the [`FromBits`] trait. [`FromBits`] may be manually implemented, or
/// generated automatically for `enum` types using the [`enum_from_bits!`] macro:
///
/// ```
/// use mycelium_bitfield::{bitfield, enum_from_bits, FromBits};
///
/// // An enum type can implement the `FromBits` trait if it has a
/// // `#[repr(uN)]` attribute.
/// #[repr(u8)]
/// #[derive(Debug, Eq, PartialEq)]
/// enum MyEnum {
/// Foo = 0b00,
/// Bar = 0b01,
/// Baz = 0b10,
/// }
///
/// impl FromBits<u32> for MyEnum {
/// // Two bits can represent all possible `MyEnum` values.
/// const BITS: u32 = 2;
/// type Error = &'static str;
///
/// fn try_from_bits(bits: u32) -> Result<Self, Self::Error> {
/// match bits as u8 {
/// bits if bits == Self::Foo as u8 => Ok(Self::Foo),
/// bits if bits == Self::Bar as u8 => Ok(Self::Bar),
/// bits if bits == Self::Baz as u8 => Ok(Self::Baz),
/// _ => Err("expected one of 0b00, 0b01, or 0b10"),
/// }
/// }
///
/// fn into_bits(self) -> u32 {
/// self as u8 as u32
/// }
/// }
///
/// // Alternatively, the `enum_from_bits!` macro can be used to
/// // automatically generate a `FromBits` implementation for an
/// // enum type.
/// //
/// // The macro will generate very similar code to the example
/// // manual implementation above.
/// enum_from_bits! {
/// #[derive(Debug, Eq, PartialEq)]
/// pub enum MyGeneratedEnum<u8> {
/// /// Isn't this cool?
/// Wow = 0b1001,
/// /// It sure is! :D
/// Whoa = 0b0110,
/// }
/// }
///
/// bitfield! {
/// pub struct TypedBitfield<u32> {
/// /// Use the first two bits to represent a typed `MyEnum` value.
/// const ENUM_VALUE: MyEnum;
///
/// /// Typed values and untyped raw bit fields can be used in the
/// /// same bitfield type.
/// pub const SOME_BITS = 6;
///
/// /// The `FromBits` trait is also implemented for `bool`, which
/// /// can be used to implement bitflags.
/// pub const FLAG_1: bool;
/// pub const FLAG_2: bool;
///
/// /// `FromBits` is also implemented by (signed and unsigned) integer
/// /// types. This will allow the next 8 bits to be treated as a `u8`.
/// pub const A_BYTE: u8;
///
/// /// We can also use the automatically generated enum:
/// pub const OTHER_ENUM: MyGeneratedEnum;
/// }
/// }
///
/// // Unpacking a typed value with `get` will return that value, or panic if
/// // the bit pattern is invalid:
/// let my_bitfield = TypedBitfield::from_bits(0b0010_0100_0011_0101_1001_1110);
///
/// assert_eq!(my_bitfield.get(TypedBitfield::ENUM_VALUE), MyEnum::Baz);
/// assert_eq!(my_bitfield.get(TypedBitfield::FLAG_1), true);
/// assert_eq!(my_bitfield.get(TypedBitfield::FLAG_2), false);
/// assert_eq!(my_bitfield.get(TypedBitfield::OTHER_ENUM), MyGeneratedEnum::Wow);
///
/// // The `try_get` method will return an error rather than panicking if an
/// // invalid bit pattern is encountered:
///
/// let invalid = TypedBitfield::from_bits(0b0011);
///
/// // There is no `MyEnum` variant for 0b11.
/// assert!(invalid.try_get(TypedBitfield::ENUM_VALUE).is_err());
/// ```
///
/// Packing specs from one bitfield type may *not* be used with a different
/// bitfield type's `get`, `set`, or `with` methods. For example, the following
/// is a type error:
///
/// ```compile_fail
/// use mycelium_bitfield::bitfield;
///
/// bitfield! {
/// struct Bitfield1<u8> {
/// pub const FOO: bool;
/// pub const BAR: bool;
/// pub const BAZ = 6;
/// }
/// }
///
/// bitfield! {
/// struct Bitfield2<u8> {
/// pub const ALICE = 2;
/// pub const BOB = 4;
/// pub const CHARLIE = 2;
/// }
/// }
///
///
/// // This is a *type error*, because `Bitfield2`'s field `ALICE` cannot be
/// // used with a `Bitfield2` value:
/// let bits = Bitfield1::new().with(Bitfield2::ALICE, 0b11);
/// ```
///
/// ## Example `Display` Output
///
/// Bitfields will automatically generate a pretty, multi-line [`fmt::Display`]
/// implementation. The default [`fmt::Display`] specifier uses only ASCII
/// characters, but when Unicode box-drawing characters are also available, the
/// alternate (`{:#}`) [`fmt::Display`] specifier may be used to select a
/// `Display` implementation that uses those characters, and is (in my opinion)
/// even prettier than the default.
///
/// For example:
///
/// ```
/// # use mycelium_bitfield::{bitfield, FromBits};
/// #
/// # #[repr(u8)]
/// # #[derive(Debug, Eq, PartialEq)]
/// # enum MyEnum {
/// # Foo = 0b00,
/// # Bar = 0b01,
/// # Baz = 0b10,
/// # }
/// #
/// # impl FromBits<u32> for MyEnum {
/// # const BITS: u32 = 2;
/// # type Error = &'static str;
/// #
/// # fn try_from_bits(bits: u32) -> Result<Self, Self::Error> {
/// # match bits as u8 {
/// # bits if bits == Self::Foo as u8 => Ok(Self::Foo),
/// # bits if bits == Self::Bar as u8 => Ok(Self::Bar),
/// # bits if bits == Self::Baz as u8 => Ok(Self::Baz),
/// # _ => Err("expected one of 0b00, 0b01, or 0b10"),
/// # }
/// # }
/// #
/// # fn into_bits(self) -> u32 {
/// # self as u8 as u32
/// # }
/// # }
/// # bitfield! {
/// # pub struct TypedBitfield<u32> {
/// # const ENUM_VALUE: MyEnum;
/// # pub const SOME_BITS = 6;
/// # pub const FLAG_1: bool;
/// # pub const FLAG_2: bool;
/// # pub const A_BYTE: u8;
/// # }
/// # }
/// // Create an example bitfield.
/// let my_bitfield = TypedBitfield::from_bits(0b0011_0101_1001_1110);
///
/// // The default `Display` implementation uses only ASCII characters:
/// let formatted_ascii = format!("{my_bitfield}");
/// let expected = r#"
/// 00000000000000000011010110011110
///..............................10 ENUM_VALUE: Baz
///........................100111.. SOME_BITS: 39
///.......................1........ FLAG_1: true
///......................0......... FLAG_2: false
///..............00001101.......... A_BYTE: 13
/// "#.trim_start();
/// assert_eq!(formatted_ascii, expected);
///
/// // The alternate `Display` format uses Unicode box-drawing characters,
/// // and looks even nicer:
/// let formatted_unicode = format!("{my_bitfield:#}");
/// let expected = r#"
/// 00000000000000000011010110011110
/// └┬─────┘││└┬───┘└┤
/// │ ││ │ └ ENUM_VALUE: Baz (10)
/// │ ││ └────── SOME_BITS: 39 (100111)
/// │ │└─────────── FLAG_1: true (1)
/// │ └──────────── FLAG_2: false (0)
/// └─────────────────── A_BYTE: 13 (00001101)
/// "#.trim_start();
/// assert_eq!(formatted_unicode, expected);
/// ```
///
/// For situations where the use of ASCII or Unicode formats is always desired
/// regardless of the behavior of an upstream formatter (e.g., when returning a
/// `fmt::Display` value that doesn't know what format specifier will be used),
/// bitfield types also generate `display_ascii()` and `display_unicode()`
/// methods. These methods return `impl fmt::Display` values that *always*
/// select either the ASCII or Unicode `Display` implementations explicitly,
/// regardless of whether or not the alternate formatting specifier is used.
///
/// [`fmt::Debug`]: core::fmt::Debug
/// [`fmt::Display`]: core::fmt::Display
/// [`fmt::Binary`]: core::fmt::Binary
/// [`fmt::UpperHex`]: core::fmt::UpperHex
/// [`fmt::LowerHex`]: core::fmt::LowerHex
/// [transparent]: https://doc.rust-lang.org/reference/type-layout.html#the-transparent-representation
/// [`example`]: crate::example
/// [`ExampleBitfield`]: crate::example::ExampleBitfield
/// [`FromBits`]: crate::FromBits
/// [`enum_from_bits!`]: crate::enum_from_bits!
#[macro_export]
macro_rules! bitfield {
(
$(#[$($meta:meta)+])*
$vis:vis struct $Name:ident<$T:ident> {
$(
$(#[$field_meta:meta])*
$field_vis:vis const $Field:ident $(: $F:ty)? $( = $val:tt)?;
)+
}
) => {
$(#[$($meta)+])*
#[derive(Copy, Clone)]
#[repr(transparent)]
$vis struct $Name($T);
#[automatically_derived]
impl core::fmt::Debug for $Name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let mut dbg = f.debug_struct(stringify!($Name));
$(
{
// skip reserved fields (names starting with `_`).
//
// NOTE(eliza): i hope this `if` gets const-folded...we
// could probably do this in a macro and guarantee that
// it happens at compile-time, but this is fine for now.
if !stringify!($Field).starts_with('_') {
dbg.field(stringify!($Field), &self.get(Self::$Field));
}
}
)+
dbg.finish()
}
}
// Some generated methods may not always be used, which may emit dead
// code warnings if the type is private.
#[allow(dead_code)]
#[automatically_derived]
impl $Name {
$crate::bitfield! { @field<$T>:
$(
$(#[$field_meta])*
$field_vis const $Field $(: $F)? $( = $val)?;
)+
}
const FIELDS: &'static [(&'static str, $crate::bitfield! { @t $T, $T, Self })] = &[$(
(stringify!($Field), Self::$Field.typed())
),+];
/// Constructs a new instance of `Self` from the provided raw bits.
#[inline]
#[must_use]
$vis const fn from_bits(bits: $T) -> Self {
Self(bits)
}
/// Constructs a new instance of `Self` with all bits set to 0.
#[inline]
#[must_use]
$vis const fn new() -> Self {
Self(0)
}
/// Returns the raw bit representatiion of `self` as an integer.
#[inline]
$vis const fn bits(self) -> $T {
self.0
}
/// Packs the bit representation of `value` into `self` at the bit
/// range designated by `field`, returning a new bitfield.
$vis fn with<T>(self, field: $crate::bitfield! { @t $T, T, Self }, value: T) -> Self
where
T: $crate::FromBits<$T>,
{
Self(field.pack(value, self.0))
}
/// Packs the bit representation of `value` into `self` at the range
/// designated by `field`, mutating `self` in place.
$vis fn set<T>(&mut self, field: $crate::bitfield! { @t $T, T, Self }, value: T) -> &mut Self
where
T: $crate::FromBits<$T>,
{
field.pack_into(value, &mut self.0);
self
}
/// Unpacks the bit range represented by `field` from `self`, and
/// converts it into a `T`-typed value.
///
/// # Panics
///
/// This method panics if `self` does not contain a valid bit
/// pattern for a `T`-typed value, as determined by `T`'s
/// `FromBits::try_from_bits` implementation.
$vis fn get<T>(self, field: $crate::bitfield! { @t $T, T, Self }) -> T
where
T: $crate::FromBits<$T>,
{
field.unpack(self.0)
}
/// Unpacks the bit range represented by `field`
/// from `self` and attempts to convert it into a `T`-typed value.
///
/// # Returns
///
/// - `Ok(T)` if a `T`-typed value could be constructed from the
/// bits in `src`
/// - `Err(T::Error)` if `src` does not contain a valid bit
/// pattern for a `T`-typed value, as determined by `T`'s
/// [`FromBits::try_from_bits` implementation.
$vis fn try_get<T>(self, field: $crate::bitfield! { @t $T, T, Self }) -> Result<T, T::Error>
where
T: $crate::FromBits<$T>,
{
field.try_unpack(self.0)
}
/// Asserts that all the packing specs for this type are valid.
///
/// This is intended to be used in unit tests.
$vis fn assert_valid() {
<$crate::bitfield! { @t $T, $T, Self }>::assert_all_valid(&Self::FIELDS);
}
/// Returns a value that formats this bitfield in a multi-line
/// format, using only ASCII characters.
///
/// This is equivalent to formatting this bitfield using a `{}`
/// display specifier, but will *never* use Unicode box-drawing
/// characters, even when an upstream formatter uses the `{:#}`
/// `fmt::Display` specifier. This is intended for use on platforms
/// where Unicode box drawing characters are never available.
$vis fn display_ascii(&self) -> impl core::fmt::Display {
struct DisplayAscii($Name);
impl core::fmt::Display for DisplayAscii {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.0.fmt_ascii(f)
}
}
DisplayAscii(*self)
}
/// Returns a value that formats this bitfield in a multi-line
/// format, always using Unicode box-drawing characters.
///
/// This is equivalent to formatting this bitfield using a `{:#}`
/// format specifier, but will *always* use Unicode box-drawing
/// characters, even when an upstream formatter uses the `{}`
/// `fmt::Display` specifier.
$vis fn display_unicode(&self) -> impl core::fmt::Display {
struct DisplayUnicode($Name);
impl core::fmt::Display for DisplayUnicode {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.0.fmt_unicode(f)
}
}
DisplayUnicode(*self)
}
fn fmt_ascii(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.pad("")?;
writeln!(f, "{:0width$b}", self.0, width = $T::BITS as usize)?;
f.pad("")?;
$({
let field = Self::$Field;
const NAME: &str = stringify!($Field);
if !NAME.starts_with("_") {
f.pad("")?;
let mut cur_pos = $T::BITS;
while cur_pos > field.most_significant_index() {
f.write_str(".")?;
cur_pos -= 1;
}
write!(f, "{:0width$b}", field.unpack_bits(self.0), width = field.bits() as usize)?;
cur_pos -= field.bits();
while cur_pos > 0 {
f.write_str(".")?;
cur_pos -= 1;
}
writeln!(f, " {NAME}: {:?}", field.unpack(self.0))?
}
})+
Ok(())
}
fn fmt_unicode(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.pad("")?;
writeln!(f, "{:0width$b}", self.0, width = $T::BITS as usize)?;
f.pad("")?;
let mut cur_pos = $T::BITS;
let mut max_len = 0;
let mut rem = 0;
let mut fields = Self::FIELDS.iter().rev().peekable();
while let Some((name, field)) = fields.next() {
while cur_pos > field.most_significant_index() {
f.write_str(" ")?;
cur_pos -= 1;
}
let bits = field.bits();
match (name, bits) {
(name, bits) if name.starts_with("_") => {
for _ in 0..bits {
f.write_str(" ")?;
}
cur_pos -= bits;
continue;
}
(_, 1) => f.write_str("│")?,
(_, 2) => f.write_str("└┤")?,
(_, bits) => {
f.write_str("└┬")?;
for _ in 0..(bits - 3) {
f.write_str("─")?;
}
f.write_str("┘")?;
}
}
if fields.peek().is_none() {
rem = cur_pos - (bits - 1);
}
max_len = core::cmp::max(max_len, name.len());
cur_pos -= field.bits()
}
f.write_str("\n")?;
$(
let field = Self::$Field;
let name = stringify!($Field);
if !name.starts_with("_") {
f.pad("")?;
cur_pos = $T::BITS;
for (cur_name, cur_field) in Self::FIELDS.iter().rev() {
while cur_pos > cur_field.most_significant_index() {
f.write_str(" ")?;
cur_pos -= 1;
}
if field == cur_field {
break;
}
let bits = cur_field.bits();
match (cur_name, bits) {
(name, bits) if name.starts_with("_") => {
for _ in 0..bits {
f.write_str(" ")?;
}
}
(_, 1) => f.write_str("│")?,
(_, bits) => {
f.write_str(" │")?;
for _ in 0..(bits - 2) {
f.write_str(" ")?;
}
}
}
cur_pos -= bits;
}
let field_bits = field.bits();
if field_bits == 1 {
f.write_str("└")?;
cur_pos -= 1;
} else {
f.write_str(" └")?;
cur_pos -= 2;
}
let len = cur_pos as usize + (max_len - name.len());
for _ in rem as usize..len {
f.write_str("─")?;
}
writeln!(f, " {}: {:?} ({:0width$b})", name, field.unpack(self.0), field.unpack_bits(self.0), width = field_bits as usize)?
}
)+
Ok(())
}
}
#[automatically_derived]
impl core::fmt::Display for $Name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if f.alternate() {
self.fmt_unicode(f)
} else {
self.fmt_ascii(f)
}
}
}
#[automatically_derived]
impl core::fmt::Binary for $Name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if f.alternate() {
write!(f, concat!(stringify!($Name), "({:#b})"), self.0)
} else {
write!(f, concat!(stringify!($Name), "({:b})"), self.0)
}
}
}
#[automatically_derived]
impl core::fmt::UpperHex for $Name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if f.alternate() {
write!(f, concat!(stringify!($Name), "({:#X})"), self.0)
} else {
write!(f, concat!(stringify!($Name), "({:X})"), self.0)
}
}
}
#[automatically_derived]
impl core::fmt::LowerHex for $Name {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
if f.alternate() {
write!(f, concat!(stringify!($Name), "({:#x})"), self.0)
} else {
write!(f, concat!(stringify!($Name), "({:x})"), self.0)
}
}
}
#[automatically_derived]
impl From<$T> for $Name {
#[inline]
fn from(val: $T) -> Self {
Self::from_bits(val)
}
}
#[automatically_derived]
impl From<$Name> for $T {
#[inline]
fn from($Name(bits): $Name) -> Self {
bits
}
}
};
(@field<$T:ident>, prev: $Prev:ident:
$(#[$meta:meta])*
$vis:vis const $Field:ident = ..;
) => {
$(#[$meta])*
$vis const $Field: $crate::bitfield!{ @t $T, $T, Self } = Self::$Prev.remaining();
};
(@field<$T:ident>, prev: $Prev:ident:
$(#[$meta:meta])*
$vis:vis const $Field:ident = $value:literal;
$($rest:tt)*
) => {
$(#[$meta])*
$vis const $Field: $crate::bitfield!{ @t $T, $T, Self } = Self::$Prev.next($value);
$crate::bitfield!{ @field<$T>, prev: $Field: $($rest)* }
};
(@field<$T:ident>, prev: $Prev:ident:
$(#[$meta:meta])*
$vis:vis const $Field:ident: $Val:ty;
$($rest:tt)*
) => {
$(#[$meta])*
$vis const $Field: $crate::bitfield!{ @t $T, $Val, Self } = Self::$Prev.then::<$Val>();
$crate::bitfield!{ @field<$T>, prev: $Field: $($rest)* }
};
(@field<$T:ident>, prev: $Prev:ident: ) => { };
(@field<$T:ident>:
$(#[$meta:meta])*
$vis:vis const $Field:ident = $value:literal;
$($rest:tt)*
) => {
$(#[$meta])*
$vis const $Field: $crate::bitfield!{ @t $T, $T, Self } = <$crate::bitfield!{ @t $T, $T, () }>::least_significant($value).typed();
$crate::bitfield!{ @field<$T>, prev: $Field: $($rest)* }
};
(@field<$T:ident>:
$(#[$meta:meta])*
$vis:vis const $Field:ident: $Val:ty;
$($rest:tt)*
) => {
$(#[$meta])*
$vis const $Field: $crate::bitfield!{ @t $T, $Val, Self } = <$crate::bitfield!{ @t $T, $Val, Self } >::first();
$crate::bitfield!{ @field<$T>, prev: $Field: $($rest)* }
};
// (@process_meta $vis:vis struct $Name:ident<$T:ty> { $(#[$before:meta])* } #[derive($($Derive:path),+)] $(#[$after:meta])*) => {
// $crate::bitfield! { @process_derives $vis struct $Name<$T> { } $($Derive),+ { $(#[$before])* $(#[$after])* } }
// };
// (@process_meta $vis:vis struct $Name:ident<$T:ty> { }) => {
// #[derive(Copy, Clone)]
// #[repr(transparent)]
// $vis struct $Name($T);
// };
// (@process_meta $vis:vis struct $Name:ident<$T:ty> { $(#[$before:meta])+ }) => {
// $(#[$before])*
// #[derive(Copy, Clone)]
// #[repr(transparent)]
// $vis struct $Name($T);
// };
// (@process_meta $vis:vis struct $Name:ident<$T:ty> { $(#[$before:meta])* } #[$current:meta] $(#[$after:meta])*) => {
// $crate::bitfield! { @process_meta $vis struct $Name<$T> { $(#[$before])* #[$current] } $(#[$after])* }
// };
// (@process_derives $vis:vis struct $Name:ident<$T:ty> { Debug, } { $($rest:tt)* }) => {
// impl core::fmt::Debug for $Name {
// fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
// if f.alternate() {
// f.debug_tuple(stringify!($Name)).field(&format_args!("{}", self)).finish()
// } else {
// f.debug_tuple(stringify!($Name)).field(&format_args!("{:#b}", self)).finish()
// }
// }
// }
// #[derive(Copy, Clone)]
// #[repr(transparent)]
// $($rest)*
// $vis struct $Name($T);
// };
// (@process_derives $vis:vis struct $Name:ident<$T:ty> { Debug, $($Before:tt),+ } $($After:tt),+ { $($rest:tt)* }) => {
// impl core::fmt::Debug for $Name {
// fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
// if f.alternate() {
// f.debug_tuple(stringify!($Name)).field(&format_args!("{}", self)).finish()
// } else {
// f.debug_tuple(stringify!($Name)).field(&format_args!("{:#b}", self)).finish()
// }
// }
// }
// #[derive(Copy, Clone, $($Before),+ $($After),+)]
// #[repr(transparent)]
// $($rest)*
// $vis struct $Name($T);
// };
// (@process_derives $vis:vis struct $Name:ident<$T:ty> { Debug, $($Before:tt),+ } { $($rest:tt)* }) => {
// #[derive(Copy, Clone, $($Before),+)]
// #[repr(transparent)]
// $($rest)*
// $vis struct $Name($T);
// };
// (@process_derives $vis:vis struct $Name:ident<$T:ty> { $($Before:tt),+ $(,)? } { $($rest:tt)* }) => {
// #[derive($($Before),+)]
// #[derive(Copy, Clone)]
// #[repr(transparent)]
// $($rest)*
// $vis struct $Name($T);
// };
// (@process_derives $vis:vis struct $Name:ident<$T:ty> { $($Before:tt),* $(,)? } $Next:tt, $($After:tt),* { $($rest:tt)* }) => {
// $crate::bitfield! { @process_derives $vis struct $Name<$T> { $Next, $($Before),* } $($After),* { $($rest)* } }
// };
// (@process_derives $vis:vis struct $Name:ident<$T:ty> { $($Before:tt),* } $Next:tt { $($rest:tt)* }) => {
// $crate::bitfield! { @process_derives $vis struct $Name<$T> { $Next, $($Before),* } { $($rest)* } }
// };
(@t usize, $V:ty, $F:ty) => { $crate::PackUsize<$V, $F> };
(@t u128, $V:ty, $F:ty) => { $crate::Pack128<$V, $F> };
(@t u64, $V:ty, $F:ty) => { $crate::Pack64<$V, $F> };
(@t u32, $V:ty, $F:ty) => { $crate::Pack32<$V, $F> };
(@t u16, $V:ty, $F:ty) => { $crate::Pack16<$V, $F> };
(@t u8, $V:ty, $F:ty) => { $crate::Pack8<$V, $F> };
(@t $T:ty, $V:ty, $F:ty) => { compile_error!(concat!("unsupported bitfield type `", stringify!($T), "`; expected one of `usize`, `u128`, `u64`, `u32`, `u16`, or `u8`")) }
}
#[cfg(test)]
mod tests {
use crate::FromBits;
bitfield! {
#[allow(dead_code)]
struct TestBitfield<u32> {
const HELLO = 4;
const _RESERVED_1 = 3;
const WORLD: bool;
const HAVE: TestEnum;
const LOTS = 5;
const OF = 1;
const FUN = 6;
}
}
bitfield! {
/// This is only here to ensure it compiles...
#[allow(dead_code)]
struct TestBitfieldHuge<u128> {
const HELLO = 4;
const _RESERVED_1 = 3;
const WORLD: bool;
const HAVE: TestEnum;
const LOTS = 5;
const OF = 1;
const FUN = 6;
const REST = ..;
}
}
#[repr(u8)]
#[derive(Debug)]
enum TestEnum {
Foo = 0b00,
Bar = 0b01,
Baz = 0b10,
Qux = 0b11,
}
impl FromBits<u32> for TestEnum {
const BITS: u32 = 2;
type Error = core::convert::Infallible;
fn try_from_bits(bits: u32) -> Result<Self, Self::Error> {
Ok(match bits as u8 {
bits if bits == Self::Foo as u8 => Self::Foo,
bits if bits == Self::Bar as u8 => Self::Bar,
bits if bits == Self::Baz as u8 => Self::Baz,
bits if bits == Self::Qux as u8 => Self::Qux,
bits => unreachable!("all patterns are covered: {:#b}", bits),
})
}
fn into_bits(self) -> u32 {
self as u8 as u32
}
}
impl FromBits<u128> for TestEnum {
const BITS: u32 = 2;
type Error = core::convert::Infallible;
fn try_from_bits(bits: u128) -> Result<Self, Self::Error> {
FromBits::<u32>::try_from_bits(bits as u32)
}
fn into_bits(self) -> u128 {
self as u8 as u128
}
}
#[derive(Debug)]
#[allow(dead_code)]
struct TestDebug {
value: usize,
bits: TestBitfield,
}
#[test]
fn test_bitfield_format() {
let test_bitfield = TestBitfield::new()
.with(TestBitfield::HELLO, 0b1001)
.with(TestBitfield::WORLD, true)
.with(TestBitfield::HAVE, TestEnum::Bar)
.with(TestBitfield::LOTS, 0b11010)
.with(TestBitfield::OF, 0)
.with(TestBitfield::FUN, 9);
let ascii = test_bitfield.to_string();
assert_eq!(ascii, test_bitfield.display_ascii().to_string());
println!("test ASCII display:\n{ascii}");
println!("test unicode display:\n{test_bitfield:#}\n");
let test_debug = TestDebug {
value: 42,
bits: test_bitfield,
};
println!("test_debug(alt): {test_debug:#?}\n");
println!("test_debug: {test_debug:?}\n");
}
#[test]
fn macro_bitfield_valid() {
TestBitfield::assert_valid();
}
}