1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
use core::{convert::Infallible, fmt};
/// Trait implemented by values which can be converted to and from raw bits.
///
/// This trait is [implemented by default] for all signed and unsigned integer
/// types, as well as for `bool`s. It can be implemented manually for any
/// user-defined type which has a well-defined bit-pattern representation. For
/// `enum` types with unsigned integer `repr`s, it may also be implemented
/// automatically using the [`enum_from_bits!`] macro.
///
/// [implemented by default]: #foreign-impls
/// [`enum_from_bits!`]: crate::enum_from_bits!
pub trait FromBits<B>: Sized {
/// The error type returned by [`Self::try_from_bits`] when an invalid bit
/// pattern is encountered.
///
/// If all bit patterns possible in [`Self::BITS`] bits are valid bit
/// patterns for a `Self`-typed value, this should generally be
/// [`core::convert::Infallible`].
type Error: fmt::Display;
/// The number of bits required to represent a value of this type.
const BITS: u32;
/// Attempt to convert `bits` into a value of this type.
///
/// # Returns
///
/// - `Ok(Self)` if `bits` contained a valid bit pattern for a value of this
/// type.
/// - `Err(Self::Error)` if `bits` is an invalid bit pattern for a value of
/// this type.
fn try_from_bits(bits: B) -> Result<Self, Self::Error>;
/// Convert `self` into a raw bit representation.
///
/// In general, this will be a low-cost conversion (e.g., for `enum`s, this
/// is generally an `as` cast).
fn into_bits(self) -> B;
}
/// Generates automatic [`FromBits`] and [`core::convert::TryFrom`]
/// implementations for an `enum` type of [`repr(uN)`], where `uN` is one of
/// [`u8`], [`u16`], [`u32`], [`u64`], or [`u128`].
///
/// This allows an `enum` type to be used with the
/// [`bitfield!`](crate::bitfield!) macro without requiring a manual [`FromBits`]
/// implementation. Essentially, this macro can be thought of as being analogous
/// to `#[derive(FromBits, TryFrom)]`.[^1]
///
/// # Generated Implementations
///
/// This macro will automatically generate a [`FromBits`]`<uN>` and a
/// [`core::convert::TryFrom`]`<uN>` implementation for the defined `enum` type.
/// In addition, [`FromBits`] and [`core::convert::TryFrom`] implementations for
/// each unsized integer type *larger* than `uN` are also automatically
/// generated. The [`Copy`] and [`Clone`] traits are also derived for the
/// generated `enum`, as they are required by the [`FromBits`] implementation..
///
/// Generated `enum` types are [`repr(uN)]`].
///
/// Additional traits may be derived for the `enum` type, such as
/// [`PartialEq`], [`Eq`], and [`Default`]. These traits are not automatically
/// derived, as custom implementations may also be desired, depending on the
/// use-case. For example, the `Default` value for am `enum` may _not_ be all
/// zeroes.
///
/// # Examples
///
/// Basic usage:
///
/// ```rust
/// use mycelium_bitfield::FromBits;
/// use core::convert::TryFrom;
///
/// mycelium_bitfield::enum_from_bits! {
/// /// Doc comments can be added to generated enum types.
/// #[derive(Debug, PartialEq, Eq)] // additional `derive` attributes can be added
/// enum Example<u8> { // generate an enum represented by a u8
/// Foo = 0b0000,
/// Bar = 0b0001,
/// Baz = 0b1000,
/// Qux = 0b0111,
/// }
/// }
///
/// // the generated enum will implement the `FromBits` trait:
/// assert_eq!(Example::try_from_bits(0b1u8), Ok(Example::Bar));
/// assert_eq!(FromBits::<u8>::into_bits(Example::Foo), 0);
///
/// // `core::convert::TryFrom` implementations are also generated:
/// assert_eq!(Example::try_from(0b1000u8), Ok(Example::Baz));
/// assert_eq!(0b0111u32.try_into(), Ok(Example::Qux));
///
/// // invalid bit-patterns return an error:
/// assert!(Example::try_from_bits(0b1001u8).is_err()); // invalid bit pattern
/// assert!(Example::try_from_bits(0b1000_0000u8).is_err()); // too many bits
/// ```
///
/// Only `u8`, `u16`, `u32`, `u64`, and `u128` may be used as `repr`s for
/// generated enums:
///
/// ```rust,compile_fail
/// mycelium_bitfield::enum_from_bits! {
/// /// This won't work. Don't do this.
/// enum InvalidRepr<i32> {
/// This = 0b01,
/// Wont = 0b10,
/// Work = 0b11,
/// }
/// }
/// ```
///
/// [^1]: **Why Not `#[derive(FromBits)]`?** Some readers may be curious about why
/// this is a declarative macro, rather than a procedural `#[derive]` macro.
/// The answer is..."because I felt like it lol". This probably *should* be
/// a proc-macro, since it's essentially just deriving a trait
/// implementation. However, one of my goals for `mycelium-bitfield` was to
/// see how far I could go using only `macro_rules!` macros. This isn't
/// because I dislike procedural macros, or that I'm concerned about
/// proc-macro compile times --- I just thought it would be a fun challenge
/// to do everything declaratively, if it was possible. And, if you *do*
/// care about the potential build time impact of proc-macro dependencies,
/// this should help. :)
///
/// [`repr(uN)`]:
/// https://doc.rust-lang.org/reference/type-layout.html#primitive-representations
#[macro_export]
macro_rules! enum_from_bits {
(
$(#[$meta:meta])* $vis:vis enum $Type:ident<$uN:ident> {
$(#[$var1_meta:meta])*
$Variant1:ident = $value1:expr,
$(
$(#[$var_meta:meta])*
$Variant:ident = $value:expr
),* $(,)?
}
) => {
$(#[$meta])*
#[repr($uN)]
#[derive(Copy, Clone)]
$vis enum $Type {
$(#[$var1_meta])*
$Variant1 = $value1,
$(
$(#[$var_meta])*
$Variant = $value
),*
}
impl $Type {
const VARIANTS: &'static [Self] = &[
Self::$Variant1,
$(
Self::$Variant,
)*
];
const MAX_VARIANT: Self = {
// crappy while loop because `for` and iterator adapters don't
// work in const-eval...
let mut max = Self::VARIANTS[0];
let mut i = 0;
while i < Self::VARIANTS.len() {
if Self::VARIANTS[i] as $uN > max as $uN {
max = Self::VARIANTS[i];
}
i += 1;
}
max
};
const MIN_VARIANT: Self = {
let mut min = Self::VARIANTS[0];
let mut i = 0;
while i < Self::VARIANTS.len() {
if (Self::VARIANTS[i] as $uN) < min as $uN {
min = Self::VARIANTS[i];
}
i += 1;
}
min
};
const NEEDED_BITS: u32 = {
// we need at least (bit position of `MAX_VARIANT`'s MSB) bits
// to represent a value of this type.
let max = Self::MAX_VARIANT as $uN;
<$uN>::BITS - max.leading_zeros()
};
const ERROR: &'static str = concat!(
"invalid value for ",
stringify!($Type),
": expected one of [",
stringify!($value1),
$(
", ", stringify!($value),
)*
"]"
);
}
#[automatically_derived]
impl core::convert::TryFrom<$uN> for $Type {
type Error = &'static str;
#[inline]
fn try_from(value: $uN) -> Result<Self, Self::Error> {
match value {
$value1 => Ok(Self::$Variant1),
$(
$value => Ok(Self::$Variant),
)*
_ => Err(Self::ERROR),
}
}
}
#[automatically_derived]
impl $crate::FromBits<$uN> for $Type {
type Error = &'static str;
const BITS: u32 = Self::NEEDED_BITS;
#[inline]
fn try_from_bits(u: $uN) -> Result<Self, Self::Error> {
Self::try_from(u)
}
#[inline]
fn into_bits(self) -> $uN {
self as $uN
}
}
$crate::enum_from_bits!(@bigger $uN, $Type);
};
(@bigger u8, $Type:ty) => {
$crate::enum_from_bits! { @impl u8, $Type, u16, u32, u64, u128, usize }
};
(@bigger u16, $Type:ty) => {
$crate::enum_from_bits! { @impl u16, $Type, u32, u64, u128, usize }
};
(@bigger u32, $Type:ty) => {
$crate::enum_from_bits! { @impl u32, $Type, u64, u128, usize }
};
(@bigger u64, $Type:ty) => {
$crate::enum_from_bits! { @impl u128 }
};
(@bigger $uN:ty, $Type:ty) => {
compile_error!(
concat!(
"repr for ",
stringify!($Type),
" must be one of u8, u16, u32, u64, or u128 (got ",
stringify!($uN),
")",
));
};
(@impl $uN:ty, $Type:ty, $($bigger:ty),+) => {
$(
#[automatically_derived]
impl $crate::FromBits<$bigger> for $Type {
type Error = &'static str;
const BITS: u32 = Self::NEEDED_BITS;
#[inline]
fn try_from_bits(u: $bigger) -> Result<Self, Self::Error> {
Self::try_from(u as $uN)
}
#[inline]
fn into_bits(self) -> $bigger {
self as $bigger
}
}
#[automatically_derived]
impl core::convert::TryFrom<$bigger> for $Type {
type Error = &'static str;
#[inline]
fn try_from(u: $bigger) -> Result<Self, Self::Error> {
Self::try_from(u as $uN)
}
}
)+
};
}
macro_rules! impl_frombits_for_ty {
($(impl FromBits<$($F:ty),+> for $T:ty {})+) => {
$(
$(
impl FromBits<$F> for $T {
const BITS: u32 = <$T>::BITS;
type Error = Infallible;
fn try_from_bits(f: $F) -> Result<Self, Self::Error> {
Ok(f as $T)
}
fn into_bits(self) -> $F {
self as $F
}
}
)*
)+
}
}
macro_rules! impl_frombits_for_bool {
(impl FromBits<$($F:ty),+> for bool {}) => {
$(
impl FromBits<$F> for bool {
const BITS: u32 = 1;
type Error = Infallible;
fn try_from_bits(f: $F) -> Result<Self, Self::Error> {
Ok(if f == 0 { false } else { true })
}
fn into_bits(self) -> $F {
if self {
1
} else {
0
}
}
}
)+
}
}
impl_frombits_for_bool! {
impl FromBits<u8, u16, u32, u64, u128, usize> for bool {}
}
impl_frombits_for_ty! {
impl FromBits<u8, u16, u32, u64, u128> for u8 {}
impl FromBits<u16, u32, u64, u128> for u16 {}
impl FromBits<u32, u64, u128> for u32 {}
impl FromBits<u64, u128> for u64 {}
impl FromBits<u128> for u128 {}
impl FromBits<u8, u16, u32, u64, u128> for i8 {}
impl FromBits<u16, u32, u64, u128> for i16 {}
impl FromBits<u32, u64, u128> for i32 {}
impl FromBits<u64, u128> for i64 {}
// Rust doesn't support 8 bit targets, so {u,i}size are always at least 16 bit wide,
// source: https://doc.rust-lang.org/1.45.2/src/core/convert/num.rs.html#134-139
//
// This allows the following impls to be supported on all platforms.
// Impls for {u,i}32 and {u,i}64 however need to be restricted (see below).
impl FromBits<usize> for u8 {}
impl FromBits<usize> for i8 {}
impl FromBits<usize> for u16 {}
impl FromBits<usize> for i16 {}
impl FromBits<usize> for usize {}
impl FromBits<usize> for isize {}
impl FromBits<u128> for usize {}
}
#[cfg(target_pointer_width = "16")]
impl_frombits_for_ty! {
impl FromBits<u16, u32, u64> for usize {}
impl FromBits<u16, u32, u64> for isize {}
}
#[cfg(target_pointer_width = "32")]
impl_frombits_for_ty! {
impl FromBits<u32, u64> for usize {}
impl FromBits<u32, u64> for isize {}
impl FromBits<usize> for u32 {}
impl FromBits<usize> for i32 {}
}
#[cfg(target_pointer_width = "64")]
impl_frombits_for_ty! {
impl FromBits<u64> for usize {}
impl FromBits<u64> for isize {}
impl FromBits<usize> for u32 {}
impl FromBits<usize> for i32 {}
impl FromBits<usize> for u64 {}
impl FromBits<usize> for i64 {}
}
#[cfg(test)]
mod tests {
use super::*;
enum_from_bits! {
#[derive(Debug, PartialEq, Eq)]
enum Test<u8> {
Foo = 0b0000,
Bar = 0b0001,
Baz = 0b1000,
Qux = 0b0111,
}
}
#[test]
fn enum_max_variant() {
assert_eq!(Test::MAX_VARIANT, Test::Baz);
}
#[test]
fn enum_min_variant() {
assert_eq!(Test::MIN_VARIANT, Test::Foo);
}
#[test]
fn enum_needed_bits() {
assert_eq!(Test::NEEDED_BITS, 4);
}
#[test]
fn enum_roundtrips() {
for variant in [Test::Foo, Test::Bar, Test::Baz, Test::Qux] {
let bits = dbg!(variant as u8);
assert_eq!(dbg!(Test::try_from_bits(bits)), Ok(variant));
assert_eq!(dbg!(Test::try_from_bits(bits as u16)), Ok(variant));
assert_eq!(dbg!(Test::try_from_bits(bits as u32)), Ok(variant));
assert_eq!(dbg!(Test::try_from_bits(bits as u64)), Ok(variant));
assert_eq!(dbg!(Test::try_from_bits(bits as u128)), Ok(variant));
}
}
#[test]
fn enum_invalid() {
for value in [0b1001u8, 0b1000_0000u8, 0b1000_0001u8, 0b1111u8] {
dbg!(value);
assert!(dbg!(Test::try_from_bits(value)).is_err());
}
}
}