1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//! Synchronization primitive allowing multiple threads to synchronize the
//! beginning of some computation.
//!
//! Implementation adapted from the 'Barrier' type of the standard library. See:
//! <https://doc.rust-lang.org/std/sync/struct.Barrier.html>
//!
//! Copyright 2014 The Rust Project Developers. See the COPYRIGHT
//! file at the top-level directory of this distribution and at
//! <http://rust-lang.org/COPYRIGHT>.
//!
//! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
//! <http://www.apache.org/licenses/LICENSE-2.0>> or the MIT license
//! <LICENSE-MIT or <http://opensource.org/licenses/MIT>>, at your
//! option. This file may not be copied, modified, or distributed
//! except according to those terms.

use crate::{mutex::Mutex, RelaxStrategy, Spin};

/// A primitive that synchronizes the execution of multiple threads.
///
/// # Example
///
/// ```
/// use spin;
/// use std::sync::Arc;
/// use std::thread;
///
/// let mut handles = Vec::with_capacity(10);
/// let barrier = Arc::new(spin::Barrier::new(10));
/// for _ in 0..10 {
///     let c = barrier.clone();
///     // The same messages will be printed together.
///     // You will NOT see any interleaving.
///     handles.push(thread::spawn(move|| {
///         println!("before wait");
///         c.wait();
///         println!("after wait");
///     }));
/// }
/// // Wait for other threads to finish.
/// for handle in handles {
///     handle.join().unwrap();
/// }
/// ```
pub struct Barrier<R = Spin> {
    lock: Mutex<BarrierState, R>,
    num_threads: usize,
}

// The inner state of a double barrier
struct BarrierState {
    count: usize,
    generation_id: usize,
}

/// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`]
/// have rendezvoused.
///
/// [`wait`]: struct.Barrier.html#method.wait
/// [`Barrier`]: struct.Barrier.html
///
/// # Examples
///
/// ```
/// use spin;
///
/// let barrier = spin::Barrier::new(1);
/// let barrier_wait_result = barrier.wait();
/// ```
pub struct BarrierWaitResult(bool);

impl<R: RelaxStrategy> Barrier<R> {
    /// Blocks the current thread until all threads have rendezvoused here.
    ///
    /// Barriers are re-usable after all threads have rendezvoused once, and can
    /// be used continuously.
    ///
    /// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that
    /// returns `true` from [`is_leader`] when returning from this function, and
    /// all other threads will receive a result that will return `false` from
    /// [`is_leader`].
    ///
    /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html
    /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader
    ///
    /// # Examples
    ///
    /// ```
    /// use spin;
    /// use std::sync::Arc;
    /// use std::thread;
    ///
    /// let mut handles = Vec::with_capacity(10);
    /// let barrier = Arc::new(spin::Barrier::new(10));
    /// for _ in 0..10 {
    ///     let c = barrier.clone();
    ///     // The same messages will be printed together.
    ///     // You will NOT see any interleaving.
    ///     handles.push(thread::spawn(move|| {
    ///         println!("before wait");
    ///         c.wait();
    ///         println!("after wait");
    ///     }));
    /// }
    /// // Wait for other threads to finish.
    /// for handle in handles {
    ///     handle.join().unwrap();
    /// }
    /// ```
    pub fn wait(&self) -> BarrierWaitResult {
        let mut lock = self.lock.lock();
        lock.count += 1;

        if lock.count < self.num_threads {
            // not the leader
            let local_gen = lock.generation_id;

            while local_gen == lock.generation_id && lock.count < self.num_threads {
                drop(lock);
                R::relax();
                lock = self.lock.lock();
            }
            BarrierWaitResult(false)
        } else {
            // this thread is the leader,
            //   and is responsible for incrementing the generation
            lock.count = 0;
            lock.generation_id = lock.generation_id.wrapping_add(1);
            BarrierWaitResult(true)
        }
    }
}

impl<R> Barrier<R> {
    /// Creates a new barrier that can block a given number of threads.
    ///
    /// A barrier will block `n`-1 threads which call [`wait`] and then wake up
    /// all threads at once when the `n`th thread calls [`wait`]. A Barrier created
    /// with n = 0 will behave identically to one created with n = 1.
    ///
    /// [`wait`]: #method.wait
    ///
    /// # Examples
    ///
    /// ```
    /// use spin;
    ///
    /// let barrier = spin::Barrier::new(10);
    /// ```
    pub const fn new(n: usize) -> Self {
        Self {
            lock: Mutex::new(BarrierState {
                count: 0,
                generation_id: 0,
            }),
            num_threads: n,
        }
    }
}

impl BarrierWaitResult {
    /// Returns whether this thread from [`wait`] is the "leader thread".
    ///
    /// Only one thread will have `true` returned from their result, all other
    /// threads will have `false` returned.
    ///
    /// [`wait`]: struct.Barrier.html#method.wait
    ///
    /// # Examples
    ///
    /// ```
    /// use spin;
    ///
    /// let barrier = spin::Barrier::new(1);
    /// let barrier_wait_result = barrier.wait();
    /// println!("{:?}", barrier_wait_result.is_leader());
    /// ```
    pub fn is_leader(&self) -> bool {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use std::sync::mpsc::{channel, TryRecvError};
    use std::sync::Arc;
    use std::thread;

    type Barrier = super::Barrier;

    fn use_barrier(n: usize, barrier: Arc<Barrier>) {
        let (tx, rx) = channel();

        let mut ts = Vec::new();
        for _ in 0..n - 1 {
            let c = barrier.clone();
            let tx = tx.clone();
            ts.push(thread::spawn(move || {
                tx.send(c.wait().is_leader()).unwrap();
            }));
        }

        // At this point, all spawned threads should be blocked,
        // so we shouldn't get anything from the port
        assert!(match rx.try_recv() {
            Err(TryRecvError::Empty) => true,
            _ => false,
        });

        let mut leader_found = barrier.wait().is_leader();

        // Now, the barrier is cleared and we should get data.
        for _ in 0..n - 1 {
            if rx.recv().unwrap() {
                assert!(!leader_found);
                leader_found = true;
            }
        }
        assert!(leader_found);

        for t in ts {
            t.join().unwrap();
        }
    }

    #[test]
    fn test_barrier() {
        const N: usize = 10;

        let barrier = Arc::new(Barrier::new(N));

        use_barrier(N, barrier.clone());

        // use barrier twice to ensure it is reusable
        use_barrier(N, barrier.clone());
    }
}