1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
//! Locks that have the same behaviour as a mutex.
//!
//! The [`Mutex`] in the root of the crate, can be configured using the `ticket_mutex` feature.
//! If it's enabled, [`TicketMutex`] and [`TicketMutexGuard`] will be re-exported as [`Mutex`]
//! and [`MutexGuard`], otherwise the [`SpinMutex`] and guard will be re-exported.
//!
//! `ticket_mutex` is disabled by default.
//!
//! [`Mutex`]: ../struct.Mutex.html
//! [`MutexGuard`]: ../struct.MutexGuard.html
//! [`TicketMutex`]: ./struct.TicketMutex.html
//! [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
//! [`SpinMutex`]: ./struct.SpinMutex.html
//! [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
#[cfg(feature = "spin_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))]
pub mod spin;
#[cfg(feature = "spin_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "spin_mutex")))]
pub use self::spin::{SpinMutex, SpinMutexGuard};
#[cfg(feature = "ticket_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))]
pub mod ticket;
#[cfg(feature = "ticket_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "ticket_mutex")))]
pub use self::ticket::{TicketMutex, TicketMutexGuard};
#[cfg(feature = "fair_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))]
pub mod fair;
#[cfg(feature = "fair_mutex")]
#[cfg_attr(docsrs, doc(cfg(feature = "fair_mutex")))]
pub use self::fair::{FairMutex, FairMutexGuard, Starvation};
use crate::{RelaxStrategy, Spin};
use core::{
fmt,
ops::{Deref, DerefMut},
};
#[cfg(all(not(feature = "spin_mutex"), not(feature = "use_ticket_mutex")))]
compile_error!("The `mutex` feature flag was used (perhaps through another feature?) without either `spin_mutex` or `use_ticket_mutex`. One of these is required.");
#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))]
type InnerMutex<T, R> = self::spin::SpinMutex<T, R>;
#[cfg(all(not(feature = "use_ticket_mutex"), feature = "spin_mutex"))]
type InnerMutexGuard<'a, T> = self::spin::SpinMutexGuard<'a, T>;
#[cfg(feature = "use_ticket_mutex")]
type InnerMutex<T, R> = self::ticket::TicketMutex<T, R>;
#[cfg(feature = "use_ticket_mutex")]
type InnerMutexGuard<'a, T> = self::ticket::TicketMutexGuard<'a, T>;
/// A spin-based lock providing mutually exclusive access to data.
///
/// The implementation uses either a ticket mutex or a regular spin mutex depending on whether the `spin_mutex` or
/// `ticket_mutex` feature flag is enabled.
///
/// # Example
///
/// ```
/// use spin;
///
/// let lock = spin::Mutex::new(0);
///
/// // Modify the data
/// *lock.lock() = 2;
///
/// // Read the data
/// let answer = *lock.lock();
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread safety example
///
/// ```
/// use spin;
/// use std::sync::{Arc, Barrier};
///
/// let thread_count = 1000;
/// let spin_mutex = Arc::new(spin::Mutex::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(thread_count + 1));
///
/// # let mut ts = Vec::new();
/// for _ in (0..thread_count) {
/// let my_barrier = barrier.clone();
/// let my_lock = spin_mutex.clone();
/// # let t =
/// std::thread::spawn(move || {
/// let mut guard = my_lock.lock();
/// *guard += 1;
///
/// // Release the lock to prevent a deadlock
/// drop(guard);
/// my_barrier.wait();
/// });
/// # ts.push(t);
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, thread_count);
///
/// # for t in ts {
/// # t.join().unwrap();
/// # }
/// ```
pub struct Mutex<T: ?Sized, R = Spin> {
inner: InnerMutex<T, R>,
}
unsafe impl<T: ?Sized + Send, R> Sync for Mutex<T, R> {}
unsafe impl<T: ?Sized + Send, R> Send for Mutex<T, R> {}
/// A generic guard that will protect some data access and
/// uses either a ticket lock or a normal spin mutex.
///
/// For more info see [`TicketMutexGuard`] or [`SpinMutexGuard`].
///
/// [`TicketMutexGuard`]: ./struct.TicketMutexGuard.html
/// [`SpinMutexGuard`]: ./struct.SpinMutexGuard.html
pub struct MutexGuard<'a, T: 'a + ?Sized> {
inner: InnerMutexGuard<'a, T>,
}
impl<T, R> Mutex<T, R> {
/// Creates a new [`Mutex`] wrapping the supplied data.
///
/// # Example
///
/// ```
/// use spin::Mutex;
///
/// static MUTEX: Mutex<()> = Mutex::new(());
///
/// fn demo() {
/// let lock = MUTEX.lock();
/// // do something with lock
/// drop(lock);
/// }
/// ```
#[inline(always)]
pub const fn new(value: T) -> Self {
Self {
inner: InnerMutex::new(value),
}
}
/// Consumes this [`Mutex`] and unwraps the underlying data.
///
/// # Example
///
/// ```
/// let lock = spin::Mutex::new(42);
/// assert_eq!(42, lock.into_inner());
/// ```
#[inline(always)]
pub fn into_inner(self) -> T {
self.inner.into_inner()
}
}
impl<T: ?Sized, R: RelaxStrategy> Mutex<T, R> {
/// Locks the [`Mutex`] and returns a guard that permits access to the inner data.
///
/// The returned value may be dereferenced for data access
/// and the lock will be dropped when the guard falls out of scope.
///
/// ```
/// let lock = spin::Mutex::new(0);
/// {
/// let mut data = lock.lock();
/// // The lock is now locked and the data can be accessed
/// *data += 1;
/// // The lock is implicitly dropped at the end of the scope
/// }
/// ```
#[inline(always)]
pub fn lock(&self) -> MutexGuard<T> {
MutexGuard {
inner: self.inner.lock(),
}
}
}
impl<T: ?Sized, R> Mutex<T, R> {
/// Returns `true` if the lock is currently held.
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
#[inline(always)]
pub fn is_locked(&self) -> bool {
self.inner.is_locked()
}
/// Force unlock this [`Mutex`].
///
/// # Safety
///
/// This is *extremely* unsafe if the lock is not held by the current
/// thread. However, this can be useful in some instances for exposing the
/// lock to FFI that doesn't know how to deal with RAII.
#[inline(always)]
pub unsafe fn force_unlock(&self) {
self.inner.force_unlock()
}
/// Try to lock this [`Mutex`], returning a lock guard if successful.
///
/// # Example
///
/// ```
/// let lock = spin::Mutex::new(42);
///
/// let maybe_guard = lock.try_lock();
/// assert!(maybe_guard.is_some());
///
/// // `maybe_guard` is still held, so the second call fails
/// let maybe_guard2 = lock.try_lock();
/// assert!(maybe_guard2.is_none());
/// ```
#[inline(always)]
pub fn try_lock(&self) -> Option<MutexGuard<T>> {
self.inner
.try_lock()
.map(|guard| MutexGuard { inner: guard })
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the [`Mutex`] mutably, and a mutable reference is guaranteed to be exclusive in Rust,
/// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such,
/// this is a 'zero-cost' operation.
///
/// # Example
///
/// ```
/// let mut lock = spin::Mutex::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.lock(), 10);
/// ```
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
self.inner.get_mut()
}
}
impl<T: ?Sized + fmt::Debug, R> fmt::Debug for Mutex<T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.inner, f)
}
}
impl<T: ?Sized + Default, R> Default for Mutex<T, R> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T, R> From<T> for Mutex<T, R> {
fn from(data: T) -> Self {
Self::new(data)
}
}
impl<'a, T: ?Sized> MutexGuard<'a, T> {
/// Leak the lock guard, yielding a mutable reference to the underlying data.
///
/// Note that this function will permanently lock the original [`Mutex`].
///
/// ```
/// let mylock = spin::Mutex::new(0);
///
/// let data: &mut i32 = spin::MutexGuard::leak(mylock.lock());
///
/// *data = 1;
/// assert_eq!(*data, 1);
/// ```
#[inline(always)]
pub fn leak(this: Self) -> &'a mut T {
InnerMutexGuard::leak(this.inner)
}
}
impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'a, T: ?Sized> Deref for MutexGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
&*self.inner
}
}
impl<'a, T: ?Sized> DerefMut for MutexGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
&mut *self.inner
}
}
#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for Mutex<(), R> {
type GuardMarker = lock_api_crate::GuardSend;
const INIT: Self = Self::new(());
fn lock(&self) {
// Prevent guard destructor running
core::mem::forget(Self::lock(self));
}
fn try_lock(&self) -> bool {
// Prevent guard destructor running
Self::try_lock(self).map(core::mem::forget).is_some()
}
unsafe fn unlock(&self) {
self.force_unlock();
}
fn is_locked(&self) -> bool {
self.inner.is_locked()
}
}