1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
//! A naïve spinning mutex.
//!
//! Waiting threads hammer an atomic variable until it becomes available. Best-case latency is low, but worst-case
//! latency is theoretically infinite.
use crate::{
atomic::{AtomicBool, Ordering},
RelaxStrategy, Spin,
};
use core::{
cell::UnsafeCell,
fmt,
marker::PhantomData,
mem::ManuallyDrop,
ops::{Deref, DerefMut},
};
/// A [spin lock](https://en.m.wikipedia.org/wiki/Spinlock) providing mutually exclusive access to data.
///
/// # Example
///
/// ```
/// use spin;
///
/// let lock = spin::mutex::SpinMutex::<_>::new(0);
///
/// // Modify the data
/// *lock.lock() = 2;
///
/// // Read the data
/// let answer = *lock.lock();
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread safety example
///
/// ```
/// use spin;
/// use std::sync::{Arc, Barrier};
///
/// let thread_count = 1000;
/// let spin_mutex = Arc::new(spin::mutex::SpinMutex::<_>::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(thread_count + 1));
///
/// # let mut ts = Vec::new();
/// for _ in (0..thread_count) {
/// let my_barrier = barrier.clone();
/// let my_lock = spin_mutex.clone();
/// # let t =
/// std::thread::spawn(move || {
/// let mut guard = my_lock.lock();
/// *guard += 1;
///
/// // Release the lock to prevent a deadlock
/// drop(guard);
/// my_barrier.wait();
/// });
/// # ts.push(t);
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, thread_count);
///
/// # for t in ts {
/// # t.join().unwrap();
/// # }
/// ```
pub struct SpinMutex<T: ?Sized, R = Spin> {
phantom: PhantomData<R>,
pub(crate) lock: AtomicBool,
data: UnsafeCell<T>,
}
/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct SpinMutexGuard<'a, T: ?Sized + 'a> {
lock: &'a AtomicBool,
data: *mut T,
}
// Same unsafe impls as `std::sync::Mutex`
unsafe impl<T: ?Sized + Send, R> Sync for SpinMutex<T, R> {}
unsafe impl<T: ?Sized + Send, R> Send for SpinMutex<T, R> {}
unsafe impl<T: ?Sized + Sync> Sync for SpinMutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Send> Send for SpinMutexGuard<'_, T> {}
impl<T, R> SpinMutex<T, R> {
/// Creates a new [`SpinMutex`] wrapping the supplied data.
///
/// # Example
///
/// ```
/// use spin::mutex::SpinMutex;
///
/// static MUTEX: SpinMutex<()> = SpinMutex::<_>::new(());
///
/// fn demo() {
/// let lock = MUTEX.lock();
/// // do something with lock
/// drop(lock);
/// }
/// ```
#[inline(always)]
pub const fn new(data: T) -> Self {
SpinMutex {
lock: AtomicBool::new(false),
data: UnsafeCell::new(data),
phantom: PhantomData,
}
}
/// Consumes this [`SpinMutex`] and unwraps the underlying data.
///
/// # Example
///
/// ```
/// let lock = spin::mutex::SpinMutex::<_>::new(42);
/// assert_eq!(42, lock.into_inner());
/// ```
#[inline(always)]
pub fn into_inner(self) -> T {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock.
let SpinMutex { data, .. } = self;
data.into_inner()
}
/// Returns a mutable pointer to the underlying data.
///
/// This is mostly meant to be used for applications which require manual unlocking, but where
/// storing both the lock and the pointer to the inner data gets inefficient.
///
/// # Example
/// ```
/// let lock = spin::mutex::SpinMutex::<_>::new(42);
///
/// unsafe {
/// core::mem::forget(lock.lock());
///
/// assert_eq!(lock.as_mut_ptr().read(), 42);
/// lock.as_mut_ptr().write(58);
///
/// lock.force_unlock();
/// }
///
/// assert_eq!(*lock.lock(), 58);
///
/// ```
#[inline(always)]
pub fn as_mut_ptr(&self) -> *mut T {
self.data.get()
}
}
impl<T: ?Sized, R: RelaxStrategy> SpinMutex<T, R> {
/// Locks the [`SpinMutex`] and returns a guard that permits access to the inner data.
///
/// The returned value may be dereferenced for data access
/// and the lock will be dropped when the guard falls out of scope.
///
/// ```
/// let lock = spin::mutex::SpinMutex::<_>::new(0);
/// {
/// let mut data = lock.lock();
/// // The lock is now locked and the data can be accessed
/// *data += 1;
/// // The lock is implicitly dropped at the end of the scope
/// }
/// ```
#[inline(always)]
pub fn lock(&self) -> SpinMutexGuard<T> {
// Can fail to lock even if the spinlock is not locked. May be more efficient than `try_lock`
// when called in a loop.
while self
.lock
.compare_exchange_weak(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
// Wait until the lock looks unlocked before retrying
while self.is_locked() {
R::relax();
}
}
SpinMutexGuard {
lock: &self.lock,
data: unsafe { &mut *self.data.get() },
}
}
}
impl<T: ?Sized, R> SpinMutex<T, R> {
/// Returns `true` if the lock is currently held.
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
#[inline(always)]
pub fn is_locked(&self) -> bool {
self.lock.load(Ordering::Relaxed)
}
/// Force unlock this [`SpinMutex`].
///
/// # Safety
///
/// This is *extremely* unsafe if the lock is not held by the current
/// thread. However, this can be useful in some instances for exposing the
/// lock to FFI that doesn't know how to deal with RAII.
#[inline(always)]
pub unsafe fn force_unlock(&self) {
self.lock.store(false, Ordering::Release);
}
/// Try to lock this [`SpinMutex`], returning a lock guard if successful.
///
/// # Example
///
/// ```
/// let lock = spin::mutex::SpinMutex::<_>::new(42);
///
/// let maybe_guard = lock.try_lock();
/// assert!(maybe_guard.is_some());
///
/// // `maybe_guard` is still held, so the second call fails
/// let maybe_guard2 = lock.try_lock();
/// assert!(maybe_guard2.is_none());
/// ```
#[inline(always)]
pub fn try_lock(&self) -> Option<SpinMutexGuard<T>> {
// The reason for using a strong compare_exchange is explained here:
// https://github.com/Amanieu/parking_lot/pull/207#issuecomment-575869107
if self
.lock
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
Some(SpinMutexGuard {
lock: &self.lock,
data: unsafe { &mut *self.data.get() },
})
} else {
None
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the [`SpinMutex`] mutably, and a mutable reference is guaranteed to be exclusive in
/// Rust, no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As
/// such, this is a 'zero-cost' operation.
///
/// # Example
///
/// ```
/// let mut lock = spin::mutex::SpinMutex::<_>::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.lock(), 10);
/// ```
#[inline(always)]
pub fn get_mut(&mut self) -> &mut T {
// We know statically that there are no other references to `self`, so
// there's no need to lock the inner mutex.
unsafe { &mut *self.data.get() }
}
}
impl<T: ?Sized + fmt::Debug, R> fmt::Debug for SpinMutex<T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_lock() {
Some(guard) => write!(f, "Mutex {{ data: ")
.and_then(|()| (&*guard).fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "Mutex {{ <locked> }}"),
}
}
}
impl<T: ?Sized + Default, R> Default for SpinMutex<T, R> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T, R> From<T> for SpinMutex<T, R> {
fn from(data: T) -> Self {
Self::new(data)
}
}
impl<'a, T: ?Sized> SpinMutexGuard<'a, T> {
/// Leak the lock guard, yielding a mutable reference to the underlying data.
///
/// Note that this function will permanently lock the original [`SpinMutex`].
///
/// ```
/// let mylock = spin::mutex::SpinMutex::<_>::new(0);
///
/// let data: &mut i32 = spin::mutex::SpinMutexGuard::leak(mylock.lock());
///
/// *data = 1;
/// assert_eq!(*data, 1);
/// ```
#[inline(always)]
pub fn leak(this: Self) -> &'a mut T {
// Use ManuallyDrop to avoid stacked-borrow invalidation
let mut this = ManuallyDrop::new(this);
// We know statically that only we are referencing data
unsafe { &mut *this.data }
}
}
impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for SpinMutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'a, T: ?Sized + fmt::Display> fmt::Display for SpinMutexGuard<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'a, T: ?Sized> Deref for SpinMutexGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
// We know statically that only we are referencing data
unsafe { &*self.data }
}
}
impl<'a, T: ?Sized> DerefMut for SpinMutexGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
// We know statically that only we are referencing data
unsafe { &mut *self.data }
}
}
impl<'a, T: ?Sized> Drop for SpinMutexGuard<'a, T> {
/// The dropping of the MutexGuard will release the lock it was created from.
fn drop(&mut self) {
self.lock.store(false, Ordering::Release);
}
}
#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawMutex for SpinMutex<(), R> {
type GuardMarker = lock_api_crate::GuardSend;
const INIT: Self = Self::new(());
fn lock(&self) {
// Prevent guard destructor running
core::mem::forget(Self::lock(self));
}
fn try_lock(&self) -> bool {
// Prevent guard destructor running
Self::try_lock(self).map(core::mem::forget).is_some()
}
unsafe fn unlock(&self) {
self.force_unlock();
}
fn is_locked(&self) -> bool {
Self::is_locked(self)
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
type SpinMutex<T> = super::SpinMutex<T>;
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
#[test]
fn smoke() {
let m = SpinMutex::<_>::new(());
drop(m.lock());
drop(m.lock());
}
#[test]
fn lots_and_lots() {
static M: SpinMutex<()> = SpinMutex::<_>::new(());
static mut CNT: u32 = 0;
const J: u32 = 1000;
const K: u32 = 3;
fn inc() {
for _ in 0..J {
unsafe {
let _g = M.lock();
CNT += 1;
}
}
}
let (tx, rx) = channel();
let mut ts = Vec::new();
for _ in 0..K {
let tx2 = tx.clone();
ts.push(thread::spawn(move || {
inc();
tx2.send(()).unwrap();
}));
let tx2 = tx.clone();
ts.push(thread::spawn(move || {
inc();
tx2.send(()).unwrap();
}));
}
drop(tx);
for _ in 0..2 * K {
rx.recv().unwrap();
}
assert_eq!(unsafe { CNT }, J * K * 2);
for t in ts {
t.join().unwrap();
}
}
#[test]
fn try_lock() {
let mutex = SpinMutex::<_>::new(42);
// First lock succeeds
let a = mutex.try_lock();
assert_eq!(a.as_ref().map(|r| **r), Some(42));
// Additional lock fails
let b = mutex.try_lock();
assert!(b.is_none());
// After dropping lock, it succeeds again
::core::mem::drop(a);
let c = mutex.try_lock();
assert_eq!(c.as_ref().map(|r| **r), Some(42));
}
#[test]
fn test_into_inner() {
let m = SpinMutex::<_>::new(NonCopy(10));
assert_eq!(m.into_inner(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = SpinMutex::<_>::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_mutex_arc_nested() {
// Tests nested mutexes and access
// to underlying data.
let arc = Arc::new(SpinMutex::<_>::new(1));
let arc2 = Arc::new(SpinMutex::<_>::new(arc));
let (tx, rx) = channel();
let t = thread::spawn(move || {
let lock = arc2.lock();
let lock2 = lock.lock();
assert_eq!(*lock2, 1);
tx.send(()).unwrap();
});
rx.recv().unwrap();
t.join().unwrap();
}
#[test]
fn test_mutex_arc_access_in_unwind() {
let arc = Arc::new(SpinMutex::<_>::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || -> () {
struct Unwinder {
i: Arc<SpinMutex<i32>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
*self.i.lock() += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.lock();
assert_eq!(*lock, 2);
}
#[test]
fn test_mutex_unsized() {
let mutex: &SpinMutex<[i32]> = &SpinMutex::<_>::new([1, 2, 3]);
{
let b = &mut *mutex.lock();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*mutex.lock(), comp);
}
#[test]
fn test_mutex_force_lock() {
let lock = SpinMutex::<_>::new(());
::std::mem::forget(lock.lock());
unsafe {
lock.force_unlock();
}
assert!(lock.try_lock().is_some());
}
}