1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
//! A lock that provides data access to either one writer or many readers.
use crate::{
atomic::{AtomicUsize, Ordering},
RelaxStrategy, Spin,
};
use core::{
cell::UnsafeCell,
fmt,
marker::PhantomData,
mem,
mem::ManuallyDrop,
ops::{Deref, DerefMut},
};
/// A lock that provides data access to either one writer or many readers.
///
/// This lock behaves in a similar manner to its namesake `std::sync::RwLock` but uses
/// spinning for synchronisation instead. Unlike its namespace, this lock does not
/// track lock poisoning.
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// An [`RwLockUpgradableGuard`](RwLockUpgradableGuard) can be upgraded to a
/// writable guard through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade)
/// [`RwLockUpgradableGuard::try_upgrade`](RwLockUpgradableGuard::try_upgrade) functions.
/// Writable or upgradeable guards can be downgraded through their respective `downgrade`
/// functions.
///
/// Based on Facebook's
/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h).
/// This implementation is unfair to writers - if the lock always has readers, then no writers will
/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no
/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken
/// when there are existing readers. However if the lock is that highly contended and writes are
/// crucial then this implementation may be a poor choice.
///
/// # Examples
///
/// ```
/// use spin;
///
/// let lock = spin::RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
/// let r1 = lock.read();
/// let r2 = lock.read();
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
/// let mut w = lock.write();
/// *w += 1;
/// assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub struct RwLock<T: ?Sized, R = Spin> {
phantom: PhantomData<R>,
lock: AtomicUsize,
data: UnsafeCell<T>,
}
const READER: usize = 1 << 2;
const UPGRADED: usize = 1 << 1;
const WRITER: usize = 1;
/// A guard that provides immutable data access.
///
/// When the guard falls out of scope it will decrement the read count,
/// potentially releasing the lock.
pub struct RwLockReadGuard<'a, T: 'a + ?Sized> {
lock: &'a AtomicUsize,
data: *const T,
}
/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct RwLockWriteGuard<'a, T: 'a + ?Sized, R = Spin> {
phantom: PhantomData<R>,
inner: &'a RwLock<T, R>,
data: *mut T,
}
/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`].
///
/// No writers or other upgradeable guards can exist while this is in scope. New reader
/// creation is prevented (to alleviate writer starvation) but there may be existing readers
/// when the lock is acquired.
///
/// When the guard falls out of scope it will release the lock.
pub struct RwLockUpgradableGuard<'a, T: 'a + ?Sized, R = Spin> {
phantom: PhantomData<R>,
inner: &'a RwLock<T, R>,
data: *const T,
}
// Same unsafe impls as `std::sync::RwLock`
unsafe impl<T: ?Sized + Send, R> Send for RwLock<T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLock<T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockWriteGuard<'_, T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockWriteGuard<'_, T, R> {}
unsafe impl<T: ?Sized + Sync> Send for RwLockReadGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}
unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockUpgradableGuard<'_, T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockUpgradableGuard<'_, T, R> {}
impl<T, R> RwLock<T, R> {
/// Creates a new spinlock wrapping the supplied data.
///
/// May be used statically:
///
/// ```
/// use spin;
///
/// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(());
///
/// fn demo() {
/// let lock = RW_LOCK.read();
/// // do something with lock
/// drop(lock);
/// }
/// ```
#[inline]
pub const fn new(data: T) -> Self {
RwLock {
phantom: PhantomData,
lock: AtomicUsize::new(0),
data: UnsafeCell::new(data),
}
}
/// Consumes this `RwLock`, returning the underlying data.
#[inline]
pub fn into_inner(self) -> T {
// We know statically that there are no outstanding references to
// `self` so there's no need to lock.
let RwLock { data, .. } = self;
data.into_inner()
}
/// Returns a mutable pointer to the underying data.
///
/// This is mostly meant to be used for applications which require manual unlocking, but where
/// storing both the lock and the pointer to the inner data gets inefficient.
///
/// While this is safe, writing to the data is undefined behavior unless the current thread has
/// acquired a write lock, and reading requires either a read or write lock.
///
/// # Example
/// ```
/// let lock = spin::RwLock::new(42);
///
/// unsafe {
/// core::mem::forget(lock.write());
///
/// assert_eq!(lock.as_mut_ptr().read(), 42);
/// lock.as_mut_ptr().write(58);
///
/// lock.force_write_unlock();
/// }
///
/// assert_eq!(*lock.read(), 58);
///
/// ```
#[inline(always)]
pub fn as_mut_ptr(&self) -> *mut T {
self.data.get()
}
}
impl<T: ?Sized, R: RelaxStrategy> RwLock<T, R> {
/// Locks this rwlock with shared read access, blocking the current thread
/// until it can be acquired.
///
/// The calling thread will be blocked until there are no more writers which
/// hold the lock. There may be other readers currently inside the lock when
/// this method returns. This method does not provide any guarantees with
/// respect to the ordering of whether contentious readers or writers will
/// acquire the lock first.
///
/// Returns an RAII guard which will release this thread's shared access
/// once it is dropped.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// let mut data = mylock.read();
/// // The lock is now locked and the data can be read
/// println!("{}", *data);
/// // The lock is dropped
/// }
/// ```
#[inline]
pub fn read(&self) -> RwLockReadGuard<T> {
loop {
match self.try_read() {
Some(guard) => return guard,
None => R::relax(),
}
}
}
/// Lock this rwlock with exclusive write access, blocking the current
/// thread until it can be acquired.
///
/// This function will not return while other writers or other readers
/// currently have access to the lock.
///
/// Returns an RAII guard which will drop the write access of this rwlock
/// when dropped.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// let mut data = mylock.write();
/// // The lock is now locked and the data can be written
/// *data += 1;
/// // The lock is dropped
/// }
/// ```
#[inline]
pub fn write(&self) -> RwLockWriteGuard<T, R> {
loop {
match self.try_write_internal(false) {
Some(guard) => return guard,
None => R::relax(),
}
}
}
/// Obtain a readable lock guard that can later be upgraded to a writable lock guard.
/// Upgrades can be done through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) method.
#[inline]
pub fn upgradeable_read(&self) -> RwLockUpgradableGuard<T, R> {
loop {
match self.try_upgradeable_read() {
Some(guard) => return guard,
None => R::relax(),
}
}
}
}
impl<T: ?Sized, R> RwLock<T, R> {
// Acquire a read lock, returning the new lock value.
fn acquire_reader(&self) -> usize {
// An arbitrary cap that allows us to catch overflows long before they happen
const MAX_READERS: usize = core::usize::MAX / READER / 2;
let value = self.lock.fetch_add(READER, Ordering::Acquire);
if value > MAX_READERS * READER {
self.lock.fetch_sub(READER, Ordering::Relaxed);
panic!("Too many lock readers, cannot safely proceed");
} else {
value
}
}
/// Attempt to acquire this lock with shared read access.
///
/// This function will never block and will return immediately if `read`
/// would otherwise succeed. Returns `Some` of an RAII guard which will
/// release the shared access of this thread when dropped, or `None` if the
/// access could not be granted. This method does not provide any
/// guarantees with respect to the ordering of whether contentious readers
/// or writers will acquire the lock first.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// match mylock.try_read() {
/// Some(data) => {
/// // The lock is now locked and the data can be read
/// println!("{}", *data);
/// // The lock is dropped
/// },
/// None => (), // no cigar
/// };
/// }
/// ```
#[inline]
pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
let value = self.acquire_reader();
// We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held.
// This helps reduce writer starvation.
if value & (WRITER | UPGRADED) != 0 {
// Lock is taken, undo.
self.lock.fetch_sub(READER, Ordering::Release);
None
} else {
Some(RwLockReadGuard {
lock: &self.lock,
data: unsafe { &*self.data.get() },
})
}
}
/// Return the number of readers that currently hold the lock (including upgradable readers).
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
pub fn reader_count(&self) -> usize {
let state = self.lock.load(Ordering::Relaxed);
state / READER + (state & UPGRADED) / UPGRADED
}
/// Return the number of writers that currently hold the lock.
///
/// Because [`RwLock`] guarantees exclusive mutable access, this function may only return either `0` or `1`.
///
/// # Safety
///
/// This function provides no synchronization guarantees and so its result should be considered 'out of date'
/// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
pub fn writer_count(&self) -> usize {
(self.lock.load(Ordering::Relaxed) & WRITER) / WRITER
}
/// Force decrement the reader count.
///
/// # Safety
///
/// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s
/// live, or if called more times than `read` has been called, but can be
/// useful in FFI contexts where the caller doesn't know how to deal with
/// RAII. The underlying atomic operation uses `Ordering::Release`.
#[inline]
pub unsafe fn force_read_decrement(&self) {
debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0);
self.lock.fetch_sub(READER, Ordering::Release);
}
/// Force unlock exclusive write access.
///
/// # Safety
///
/// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s
/// live, or if called when there are current readers, but can be useful in
/// FFI contexts where the caller doesn't know how to deal with RAII. The
/// underlying atomic operation uses `Ordering::Release`.
#[inline]
pub unsafe fn force_write_unlock(&self) {
debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0);
self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
}
#[inline(always)]
fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T, R>> {
if compare_exchange(
&self.lock,
0,
WRITER,
Ordering::Acquire,
Ordering::Relaxed,
strong,
)
.is_ok()
{
Some(RwLockWriteGuard {
phantom: PhantomData,
inner: self,
data: unsafe { &mut *self.data.get() },
})
} else {
None
}
}
/// Attempt to lock this rwlock with exclusive write access.
///
/// This function does not ever block, and it will return `None` if a call
/// to `write` would otherwise block. If successful, an RAII guard is
/// returned.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// {
/// match mylock.try_write() {
/// Some(mut data) => {
/// // The lock is now locked and the data can be written
/// *data += 1;
/// // The lock is implicitly dropped
/// },
/// None => (), // no cigar
/// };
/// }
/// ```
#[inline]
pub fn try_write(&self) -> Option<RwLockWriteGuard<T, R>> {
self.try_write_internal(true)
}
/// Tries to obtain an upgradeable lock guard.
#[inline]
pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T, R>> {
if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
Some(RwLockUpgradableGuard {
phantom: PhantomData,
inner: self,
data: unsafe { &*self.data.get() },
})
} else {
// We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock.
// When they unlock, they will clear the bit.
None
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `RwLock` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// let mut lock = spin::RwLock::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.read(), 10);
/// ```
pub fn get_mut(&mut self) -> &mut T {
// We know statically that there are no other references to `self`, so
// there's no need to lock the inner lock.
unsafe { &mut *self.data.get() }
}
}
impl<T: ?Sized + fmt::Debug, R> fmt::Debug for RwLock<T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try_read() {
Some(guard) => write!(f, "RwLock {{ data: ")
.and_then(|()| (&*guard).fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "RwLock {{ <locked> }}"),
}
}
}
impl<T: ?Sized + Default, R> Default for RwLock<T, R> {
fn default() -> Self {
Self::new(Default::default())
}
}
impl<T, R> From<T> for RwLock<T, R> {
fn from(data: T) -> Self {
Self::new(data)
}
}
impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
/// Leak the lock guard, yielding a reference to the underlying data.
///
/// Note that this function will permanently lock the original lock for all but reading locks.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let data: &i32 = spin::RwLockReadGuard::leak(mylock.read());
///
/// assert_eq!(*data, 0);
/// ```
#[inline]
pub fn leak(this: Self) -> &'rwlock T {
let this = ManuallyDrop::new(this);
// Safety: We know statically that only we are referencing data
unsafe { &*this.data }
}
}
impl<'rwlock, T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'rwlock, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'rwlock, T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'rwlock, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'rwlock, T: ?Sized, R: RelaxStrategy> RwLockUpgradableGuard<'rwlock, T, R> {
/// Upgrades an upgradeable lock guard to a writable lock guard.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
/// let writable = upgradeable.upgrade();
/// ```
#[inline]
pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T, R> {
loop {
self = match self.try_upgrade_internal(false) {
Ok(guard) => return guard,
Err(e) => e,
};
R::relax();
}
}
}
impl<'rwlock, T: ?Sized, R> RwLockUpgradableGuard<'rwlock, T, R> {
#[inline(always)]
fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
if compare_exchange(
&self.inner.lock,
UPGRADED,
WRITER,
Ordering::Acquire,
Ordering::Relaxed,
strong,
)
.is_ok()
{
let inner = self.inner;
// Forget the old guard so its destructor doesn't run (before mutably aliasing data below)
mem::forget(self);
// Upgrade successful
Ok(RwLockWriteGuard {
phantom: PhantomData,
inner,
data: unsafe { &mut *inner.data.get() },
})
} else {
Err(self)
}
}
/// Tries to upgrade an upgradeable lock guard to a writable lock guard.
///
/// ```
/// let mylock = spin::RwLock::new(0);
/// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
///
/// match upgradeable.try_upgrade() {
/// Ok(writable) => /* upgrade successful - use writable lock guard */ (),
/// Err(upgradeable) => /* upgrade unsuccessful */ (),
/// };
/// ```
#[inline]
pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
self.try_upgrade_internal(true)
}
#[inline]
/// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
///
/// ```
/// let mylock = spin::RwLock::new(1);
///
/// let upgradeable = mylock.upgradeable_read();
/// assert!(mylock.try_read().is_none());
/// assert_eq!(*upgradeable, 1);
///
/// let readable = upgradeable.downgrade(); // This is guaranteed not to spin
/// assert!(mylock.try_read().is_some());
/// assert_eq!(*readable, 1);
/// ```
pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
// Reserve the read guard for ourselves
self.inner.acquire_reader();
let inner = self.inner;
// Dropping self removes the UPGRADED bit
mem::drop(self);
RwLockReadGuard {
lock: &inner.lock,
data: unsafe { &*inner.data.get() },
}
}
/// Leak the lock guard, yielding a reference to the underlying data.
///
/// Note that this function will permanently lock the original lock.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let data: &i32 = spin::RwLockUpgradableGuard::leak(mylock.upgradeable_read());
///
/// assert_eq!(*data, 0);
/// ```
#[inline]
pub fn leak(this: Self) -> &'rwlock T {
let this = ManuallyDrop::new(this);
// Safety: We know statically that only we are referencing data
unsafe { &*this.data }
}
}
impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockUpgradableGuard<'rwlock, T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockUpgradableGuard<'rwlock, T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'rwlock, T: ?Sized, R> RwLockWriteGuard<'rwlock, T, R> {
/// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let mut writable = mylock.write();
/// *writable = 1;
///
/// let readable = writable.downgrade(); // This is guaranteed not to spin
/// # let readable_2 = mylock.try_read().unwrap();
/// assert_eq!(*readable, 1);
/// ```
#[inline]
pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
// Reserve the read guard for ourselves
self.inner.acquire_reader();
let inner = self.inner;
// Dropping self removes the UPGRADED bit
mem::drop(self);
RwLockReadGuard {
lock: &inner.lock,
data: unsafe { &*inner.data.get() },
}
}
/// Downgrades the writable lock guard to an upgradable, shared lock guard. Cannot fail and is guaranteed not to spin.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let mut writable = mylock.write();
/// *writable = 1;
///
/// let readable = writable.downgrade_to_upgradeable(); // This is guaranteed not to spin
/// assert_eq!(*readable, 1);
/// ```
#[inline]
pub fn downgrade_to_upgradeable(self) -> RwLockUpgradableGuard<'rwlock, T, R> {
debug_assert_eq!(
self.inner.lock.load(Ordering::Acquire) & (WRITER | UPGRADED),
WRITER
);
// Reserve the read guard for ourselves
self.inner.lock.store(UPGRADED, Ordering::Release);
let inner = self.inner;
// Dropping self removes the UPGRADED bit
mem::forget(self);
RwLockUpgradableGuard {
phantom: PhantomData,
inner,
data: unsafe { &*inner.data.get() },
}
}
/// Leak the lock guard, yielding a mutable reference to the underlying data.
///
/// Note that this function will permanently lock the original lock.
///
/// ```
/// let mylock = spin::RwLock::new(0);
///
/// let data: &mut i32 = spin::RwLockWriteGuard::leak(mylock.write());
///
/// *data = 1;
/// assert_eq!(*data, 1);
/// ```
#[inline]
pub fn leak(this: Self) -> &'rwlock mut T {
let mut this = ManuallyDrop::new(this);
// Safety: We know statically that only we are referencing data
unsafe { &mut *this.data }
}
}
impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockWriteGuard<'rwlock, T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockWriteGuard<'rwlock, T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> {
type Target = T;
fn deref(&self) -> &T {
// Safety: We know statically that only we are referencing data
unsafe { &*self.data }
}
}
impl<'rwlock, T: ?Sized, R> Deref for RwLockUpgradableGuard<'rwlock, T, R> {
type Target = T;
fn deref(&self) -> &T {
// Safety: We know statically that only we are referencing data
unsafe { &*self.data }
}
}
impl<'rwlock, T: ?Sized, R> Deref for RwLockWriteGuard<'rwlock, T, R> {
type Target = T;
fn deref(&self) -> &T {
// Safety: We know statically that only we are referencing data
unsafe { &*self.data }
}
}
impl<'rwlock, T: ?Sized, R> DerefMut for RwLockWriteGuard<'rwlock, T, R> {
fn deref_mut(&mut self) -> &mut T {
// Safety: We know statically that only we are referencing data
unsafe { &mut *self.data }
}
}
impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> {
fn drop(&mut self) {
debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
self.lock.fetch_sub(READER, Ordering::Release);
}
}
impl<'rwlock, T: ?Sized, R> Drop for RwLockUpgradableGuard<'rwlock, T, R> {
fn drop(&mut self) {
debug_assert_eq!(
self.inner.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED),
UPGRADED
);
self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
}
}
impl<'rwlock, T: ?Sized, R> Drop for RwLockWriteGuard<'rwlock, T, R> {
fn drop(&mut self) {
debug_assert_eq!(self.inner.lock.load(Ordering::Relaxed) & WRITER, WRITER);
// Writer is responsible for clearing both WRITER and UPGRADED bits.
// The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held.
self.inner
.lock
.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
}
}
#[inline(always)]
fn compare_exchange(
atomic: &AtomicUsize,
current: usize,
new: usize,
success: Ordering,
failure: Ordering,
strong: bool,
) -> Result<usize, usize> {
if strong {
atomic.compare_exchange(current, new, success, failure)
} else {
atomic.compare_exchange_weak(current, new, success, failure)
}
}
#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLock for RwLock<(), R> {
type GuardMarker = lock_api_crate::GuardSend;
const INIT: Self = Self::new(());
#[inline(always)]
fn lock_exclusive(&self) {
// Prevent guard destructor running
core::mem::forget(self.write());
}
#[inline(always)]
fn try_lock_exclusive(&self) -> bool {
// Prevent guard destructor running
self.try_write().map(|g| core::mem::forget(g)).is_some()
}
#[inline(always)]
unsafe fn unlock_exclusive(&self) {
drop(RwLockWriteGuard {
inner: self,
data: &mut (),
phantom: PhantomData,
});
}
#[inline(always)]
fn lock_shared(&self) {
// Prevent guard destructor running
core::mem::forget(self.read());
}
#[inline(always)]
fn try_lock_shared(&self) -> bool {
// Prevent guard destructor running
self.try_read().map(|g| core::mem::forget(g)).is_some()
}
#[inline(always)]
unsafe fn unlock_shared(&self) {
drop(RwLockReadGuard {
lock: &self.lock,
data: &(),
});
}
#[inline(always)]
fn is_locked(&self) -> bool {
self.lock.load(Ordering::Relaxed) != 0
}
}
#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockUpgrade for RwLock<(), R> {
#[inline(always)]
fn lock_upgradable(&self) {
// Prevent guard destructor running
core::mem::forget(self.upgradeable_read());
}
#[inline(always)]
fn try_lock_upgradable(&self) -> bool {
// Prevent guard destructor running
self.try_upgradeable_read()
.map(|g| core::mem::forget(g))
.is_some()
}
#[inline(always)]
unsafe fn unlock_upgradable(&self) {
drop(RwLockUpgradableGuard {
inner: self,
data: &(),
phantom: PhantomData,
});
}
#[inline(always)]
unsafe fn upgrade(&self) {
let tmp_guard = RwLockUpgradableGuard {
inner: self,
data: &(),
phantom: PhantomData,
};
core::mem::forget(tmp_guard.upgrade());
}
#[inline(always)]
unsafe fn try_upgrade(&self) -> bool {
let tmp_guard = RwLockUpgradableGuard {
inner: self,
data: &(),
phantom: PhantomData,
};
tmp_guard
.try_upgrade()
.map(|g| core::mem::forget(g))
.is_ok()
}
}
#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockDowngrade for RwLock<(), R> {
unsafe fn downgrade(&self) {
let tmp_guard = RwLockWriteGuard {
inner: self,
data: &mut (),
phantom: PhantomData,
};
core::mem::forget(tmp_guard.downgrade());
}
}
#[cfg(feature = "lock_api1")]
unsafe impl lock_api::RawRwLockUpgradeDowngrade for RwLock<()> {
unsafe fn downgrade_upgradable(&self) {
let tmp_guard = RwLockUpgradableGuard {
inner: self,
data: &(),
phantom: PhantomData,
};
core::mem::forget(tmp_guard.downgrade());
}
unsafe fn downgrade_to_upgradable(&self) {
let tmp_guard = RwLockWriteGuard {
inner: self,
data: &mut (),
phantom: PhantomData,
};
core::mem::forget(tmp_guard.downgrade_to_upgradeable());
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
type RwLock<T> = super::RwLock<T>;
#[derive(Eq, PartialEq, Debug)]
struct NonCopy(i32);
#[test]
fn smoke() {
let l = RwLock::new(());
drop(l.read());
drop(l.write());
drop((l.read(), l.read()));
drop(l.write());
}
// TODO: needs RNG
//#[test]
//fn frob() {
// static R: RwLock = RwLock::new();
// const N: usize = 10;
// const M: usize = 1000;
//
// let (tx, rx) = channel::<()>();
// for _ in 0..N {
// let tx = tx.clone();
// thread::spawn(move|| {
// let mut rng = rand::thread_rng();
// for _ in 0..M {
// if rng.gen_weighted_bool(N) {
// drop(R.write());
// } else {
// drop(R.read());
// }
// }
// drop(tx);
// });
// }
// drop(tx);
// let _ = rx.recv();
// unsafe { R.destroy(); }
//}
#[test]
fn test_rw_arc() {
let arc = Arc::new(RwLock::new(0));
let arc2 = arc.clone();
let (tx, rx) = channel();
let t = thread::spawn(move || {
let mut lock = arc2.write();
for _ in 0..10 {
let tmp = *lock;
*lock = -1;
thread::yield_now();
*lock = tmp + 1;
}
tx.send(()).unwrap();
});
// Readers try to catch the writer in the act
let mut children = Vec::new();
for _ in 0..5 {
let arc3 = arc.clone();
children.push(thread::spawn(move || {
let lock = arc3.read();
assert!(*lock >= 0);
}));
}
// Wait for children to pass their asserts
for r in children {
assert!(r.join().is_ok());
}
// Wait for writer to finish
rx.recv().unwrap();
let lock = arc.read();
assert_eq!(*lock, 10);
assert!(t.join().is_ok());
}
#[test]
fn test_rw_access_in_unwind() {
let arc = Arc::new(RwLock::new(1));
let arc2 = arc.clone();
let _ = thread::spawn(move || -> () {
struct Unwinder {
i: Arc<RwLock<isize>>,
}
impl Drop for Unwinder {
fn drop(&mut self) {
let mut lock = self.i.write();
*lock += 1;
}
}
let _u = Unwinder { i: arc2 };
panic!();
})
.join();
let lock = arc.read();
assert_eq!(*lock, 2);
}
#[test]
fn test_rwlock_unsized() {
let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
{
let b = &mut *rw.write();
b[0] = 4;
b[2] = 5;
}
let comp: &[i32] = &[4, 2, 5];
assert_eq!(&*rw.read(), comp);
}
#[test]
fn test_rwlock_try_write() {
use std::mem::drop;
let lock = RwLock::new(0isize);
let read_guard = lock.read();
let write_result = lock.try_write();
match write_result {
None => (),
Some(_) => assert!(
false,
"try_write should not succeed while read_guard is in scope"
),
}
drop(read_guard);
}
#[test]
fn test_rw_try_read() {
let m = RwLock::new(0);
::std::mem::forget(m.write());
assert!(m.try_read().is_none());
}
#[test]
fn test_into_inner() {
let m = RwLock::new(NonCopy(10));
assert_eq!(m.into_inner(), NonCopy(10));
}
#[test]
fn test_into_inner_drop() {
struct Foo(Arc<AtomicUsize>);
impl Drop for Foo {
fn drop(&mut self) {
self.0.fetch_add(1, Ordering::SeqCst);
}
}
let num_drops = Arc::new(AtomicUsize::new(0));
let m = RwLock::new(Foo(num_drops.clone()));
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
{
let _inner = m.into_inner();
assert_eq!(num_drops.load(Ordering::SeqCst), 0);
}
assert_eq!(num_drops.load(Ordering::SeqCst), 1);
}
#[test]
fn test_force_read_decrement() {
let m = RwLock::new(());
::std::mem::forget(m.read());
::std::mem::forget(m.read());
::std::mem::forget(m.read());
assert!(m.try_write().is_none());
unsafe {
m.force_read_decrement();
m.force_read_decrement();
}
assert!(m.try_write().is_none());
unsafe {
m.force_read_decrement();
}
assert!(m.try_write().is_some());
}
#[test]
fn test_force_write_unlock() {
let m = RwLock::new(());
::std::mem::forget(m.write());
assert!(m.try_read().is_none());
unsafe {
m.force_write_unlock();
}
assert!(m.try_read().is_some());
}
#[test]
fn test_upgrade_downgrade() {
let m = RwLock::new(());
{
let _r = m.read();
let upg = m.try_upgradeable_read().unwrap();
assert!(m.try_read().is_none());
assert!(m.try_write().is_none());
assert!(upg.try_upgrade().is_err());
}
{
let w = m.write();
assert!(m.try_upgradeable_read().is_none());
let _r = w.downgrade();
assert!(m.try_upgradeable_read().is_some());
assert!(m.try_read().is_some());
assert!(m.try_write().is_none());
}
{
let _u = m.upgradeable_read();
assert!(m.try_upgradeable_read().is_none());
}
assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok());
}
}