1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
//! A lock that provides data access to either one writer or many readers.

use crate::{
    atomic::{AtomicUsize, Ordering},
    RelaxStrategy, Spin,
};
use core::{
    cell::UnsafeCell,
    fmt,
    marker::PhantomData,
    mem,
    mem::ManuallyDrop,
    ops::{Deref, DerefMut},
};

/// A lock that provides data access to either one writer or many readers.
///
/// This lock behaves in a similar manner to its namesake `std::sync::RwLock` but uses
/// spinning for synchronisation instead. Unlike its namespace, this lock does not
/// track lock poisoning.
///
/// This type of lock allows a number of readers or at most one writer at any
/// point in time. The write portion of this lock typically allows modification
/// of the underlying data (exclusive access) and the read portion of this lock
/// typically allows for read-only access (shared access).
///
/// The type parameter `T` represents the data that this lock protects. It is
/// required that `T` satisfies `Send` to be shared across tasks and `Sync` to
/// allow concurrent access through readers. The RAII guards returned from the
/// locking methods implement `Deref` (and `DerefMut` for the `write` methods)
/// to allow access to the contained of the lock.
///
/// An [`RwLockUpgradableGuard`](RwLockUpgradableGuard) can be upgraded to a
/// writable guard through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade)
/// [`RwLockUpgradableGuard::try_upgrade`](RwLockUpgradableGuard::try_upgrade) functions.
/// Writable or upgradeable guards can be downgraded through their respective `downgrade`
/// functions.
///
/// Based on Facebook's
/// [`folly/RWSpinLock.h`](https://github.com/facebook/folly/blob/a0394d84f2d5c3e50ebfd0566f9d3acb52cfab5a/folly/synchronization/RWSpinLock.h).
/// This implementation is unfair to writers - if the lock always has readers, then no writers will
/// ever get a chance. Using an upgradeable lock guard can *somewhat* alleviate this issue as no
/// new readers are allowed when an upgradeable guard is held, but upgradeable guards can be taken
/// when there are existing readers. However if the lock is that highly contended and writes are
/// crucial then this implementation may be a poor choice.
///
/// # Examples
///
/// ```
/// use spin;
///
/// let lock = spin::RwLock::new(5);
///
/// // many reader locks can be held at once
/// {
///     let r1 = lock.read();
///     let r2 = lock.read();
///     assert_eq!(*r1, 5);
///     assert_eq!(*r2, 5);
/// } // read locks are dropped at this point
///
/// // only one write lock may be held, however
/// {
///     let mut w = lock.write();
///     *w += 1;
///     assert_eq!(*w, 6);
/// } // write lock is dropped here
/// ```
pub struct RwLock<T: ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    lock: AtomicUsize,
    data: UnsafeCell<T>,
}

const READER: usize = 1 << 2;
const UPGRADED: usize = 1 << 1;
const WRITER: usize = 1;

/// A guard that provides immutable data access.
///
/// When the guard falls out of scope it will decrement the read count,
/// potentially releasing the lock.
pub struct RwLockReadGuard<'a, T: 'a + ?Sized> {
    lock: &'a AtomicUsize,
    data: *const T,
}

/// A guard that provides mutable data access.
///
/// When the guard falls out of scope it will release the lock.
pub struct RwLockWriteGuard<'a, T: 'a + ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    inner: &'a RwLock<T, R>,
    data: *mut T,
}

/// A guard that provides immutable data access but can be upgraded to [`RwLockWriteGuard`].
///
/// No writers or other upgradeable guards can exist while this is in scope. New reader
/// creation is prevented (to alleviate writer starvation) but there may be existing readers
/// when the lock is acquired.
///
/// When the guard falls out of scope it will release the lock.
pub struct RwLockUpgradableGuard<'a, T: 'a + ?Sized, R = Spin> {
    phantom: PhantomData<R>,
    inner: &'a RwLock<T, R>,
    data: *const T,
}

// Same unsafe impls as `std::sync::RwLock`
unsafe impl<T: ?Sized + Send, R> Send for RwLock<T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLock<T, R> {}

unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockWriteGuard<'_, T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockWriteGuard<'_, T, R> {}

unsafe impl<T: ?Sized + Sync> Send for RwLockReadGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for RwLockReadGuard<'_, T> {}

unsafe impl<T: ?Sized + Send + Sync, R> Send for RwLockUpgradableGuard<'_, T, R> {}
unsafe impl<T: ?Sized + Send + Sync, R> Sync for RwLockUpgradableGuard<'_, T, R> {}

impl<T, R> RwLock<T, R> {
    /// Creates a new spinlock wrapping the supplied data.
    ///
    /// May be used statically:
    ///
    /// ```
    /// use spin;
    ///
    /// static RW_LOCK: spin::RwLock<()> = spin::RwLock::new(());
    ///
    /// fn demo() {
    ///     let lock = RW_LOCK.read();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    #[inline]
    pub const fn new(data: T) -> Self {
        RwLock {
            phantom: PhantomData,
            lock: AtomicUsize::new(0),
            data: UnsafeCell::new(data),
        }
    }

    /// Consumes this `RwLock`, returning the underlying data.
    #[inline]
    pub fn into_inner(self) -> T {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to lock.
        let RwLock { data, .. } = self;
        data.into_inner()
    }
    /// Returns a mutable pointer to the underying data.
    ///
    /// This is mostly meant to be used for applications which require manual unlocking, but where
    /// storing both the lock and the pointer to the inner data gets inefficient.
    ///
    /// While this is safe, writing to the data is undefined behavior unless the current thread has
    /// acquired a write lock, and reading requires either a read or write lock.
    ///
    /// # Example
    /// ```
    /// let lock = spin::RwLock::new(42);
    ///
    /// unsafe {
    ///     core::mem::forget(lock.write());
    ///
    ///     assert_eq!(lock.as_mut_ptr().read(), 42);
    ///     lock.as_mut_ptr().write(58);
    ///
    ///     lock.force_write_unlock();
    /// }
    ///
    /// assert_eq!(*lock.read(), 58);
    ///
    /// ```
    #[inline(always)]
    pub fn as_mut_ptr(&self) -> *mut T {
        self.data.get()
    }
}

impl<T: ?Sized, R: RelaxStrategy> RwLock<T, R> {
    /// Locks this rwlock with shared read access, blocking the current thread
    /// until it can be acquired.
    ///
    /// The calling thread will be blocked until there are no more writers which
    /// hold the lock. There may be other readers currently inside the lock when
    /// this method returns. This method does not provide any guarantees with
    /// respect to the ordering of whether contentious readers or writers will
    /// acquire the lock first.
    ///
    /// Returns an RAII guard which will release this thread's shared access
    /// once it is dropped.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     let mut data = mylock.read();
    ///     // The lock is now locked and the data can be read
    ///     println!("{}", *data);
    ///     // The lock is dropped
    /// }
    /// ```
    #[inline]
    pub fn read(&self) -> RwLockReadGuard<T> {
        loop {
            match self.try_read() {
                Some(guard) => return guard,
                None => R::relax(),
            }
        }
    }

    /// Lock this rwlock with exclusive write access, blocking the current
    /// thread until it can be acquired.
    ///
    /// This function will not return while other writers or other readers
    /// currently have access to the lock.
    ///
    /// Returns an RAII guard which will drop the write access of this rwlock
    /// when dropped.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     let mut data = mylock.write();
    ///     // The lock is now locked and the data can be written
    ///     *data += 1;
    ///     // The lock is dropped
    /// }
    /// ```
    #[inline]
    pub fn write(&self) -> RwLockWriteGuard<T, R> {
        loop {
            match self.try_write_internal(false) {
                Some(guard) => return guard,
                None => R::relax(),
            }
        }
    }

    /// Obtain a readable lock guard that can later be upgraded to a writable lock guard.
    /// Upgrades can be done through the [`RwLockUpgradableGuard::upgrade`](RwLockUpgradableGuard::upgrade) method.
    #[inline]
    pub fn upgradeable_read(&self) -> RwLockUpgradableGuard<T, R> {
        loop {
            match self.try_upgradeable_read() {
                Some(guard) => return guard,
                None => R::relax(),
            }
        }
    }
}

impl<T: ?Sized, R> RwLock<T, R> {
    // Acquire a read lock, returning the new lock value.
    fn acquire_reader(&self) -> usize {
        // An arbitrary cap that allows us to catch overflows long before they happen
        const MAX_READERS: usize = core::usize::MAX / READER / 2;

        let value = self.lock.fetch_add(READER, Ordering::Acquire);

        if value > MAX_READERS * READER {
            self.lock.fetch_sub(READER, Ordering::Relaxed);
            panic!("Too many lock readers, cannot safely proceed");
        } else {
            value
        }
    }

    /// Attempt to acquire this lock with shared read access.
    ///
    /// This function will never block and will return immediately if `read`
    /// would otherwise succeed. Returns `Some` of an RAII guard which will
    /// release the shared access of this thread when dropped, or `None` if the
    /// access could not be granted. This method does not provide any
    /// guarantees with respect to the ordering of whether contentious readers
    /// or writers will acquire the lock first.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     match mylock.try_read() {
    ///         Some(data) => {
    ///             // The lock is now locked and the data can be read
    ///             println!("{}", *data);
    ///             // The lock is dropped
    ///         },
    ///         None => (), // no cigar
    ///     };
    /// }
    /// ```
    #[inline]
    pub fn try_read(&self) -> Option<RwLockReadGuard<T>> {
        let value = self.acquire_reader();

        // We check the UPGRADED bit here so that new readers are prevented when an UPGRADED lock is held.
        // This helps reduce writer starvation.
        if value & (WRITER | UPGRADED) != 0 {
            // Lock is taken, undo.
            self.lock.fetch_sub(READER, Ordering::Release);
            None
        } else {
            Some(RwLockReadGuard {
                lock: &self.lock,
                data: unsafe { &*self.data.get() },
            })
        }
    }

    /// Return the number of readers that currently hold the lock (including upgradable readers).
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    pub fn reader_count(&self) -> usize {
        let state = self.lock.load(Ordering::Relaxed);
        state / READER + (state & UPGRADED) / UPGRADED
    }

    /// Return the number of writers that currently hold the lock.
    ///
    /// Because [`RwLock`] guarantees exclusive mutable access, this function may only return either `0` or `1`.
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    pub fn writer_count(&self) -> usize {
        (self.lock.load(Ordering::Relaxed) & WRITER) / WRITER
    }

    /// Force decrement the reader count.
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if there are outstanding `RwLockReadGuard`s
    /// live, or if called more times than `read` has been called, but can be
    /// useful in FFI contexts where the caller doesn't know how to deal with
    /// RAII. The underlying atomic operation uses `Ordering::Release`.
    #[inline]
    pub unsafe fn force_read_decrement(&self) {
        debug_assert!(self.lock.load(Ordering::Relaxed) & !WRITER > 0);
        self.lock.fetch_sub(READER, Ordering::Release);
    }

    /// Force unlock exclusive write access.
    ///
    /// # Safety
    ///
    /// This is *extremely* unsafe if there are outstanding `RwLockWriteGuard`s
    /// live, or if called when there are current readers, but can be useful in
    /// FFI contexts where the caller doesn't know how to deal with RAII. The
    /// underlying atomic operation uses `Ordering::Release`.
    #[inline]
    pub unsafe fn force_write_unlock(&self) {
        debug_assert_eq!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED), 0);
        self.lock.fetch_and(!(WRITER | UPGRADED), Ordering::Release);
    }

    #[inline(always)]
    fn try_write_internal(&self, strong: bool) -> Option<RwLockWriteGuard<T, R>> {
        if compare_exchange(
            &self.lock,
            0,
            WRITER,
            Ordering::Acquire,
            Ordering::Relaxed,
            strong,
        )
        .is_ok()
        {
            Some(RwLockWriteGuard {
                phantom: PhantomData,
                inner: self,
                data: unsafe { &mut *self.data.get() },
            })
        } else {
            None
        }
    }

    /// Attempt to lock this rwlock with exclusive write access.
    ///
    /// This function does not ever block, and it will return `None` if a call
    /// to `write` would otherwise block. If successful, an RAII guard is
    /// returned.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// {
    ///     match mylock.try_write() {
    ///         Some(mut data) => {
    ///             // The lock is now locked and the data can be written
    ///             *data += 1;
    ///             // The lock is implicitly dropped
    ///         },
    ///         None => (), // no cigar
    ///     };
    /// }
    /// ```
    #[inline]
    pub fn try_write(&self) -> Option<RwLockWriteGuard<T, R>> {
        self.try_write_internal(true)
    }

    /// Tries to obtain an upgradeable lock guard.
    #[inline]
    pub fn try_upgradeable_read(&self) -> Option<RwLockUpgradableGuard<T, R>> {
        if self.lock.fetch_or(UPGRADED, Ordering::Acquire) & (WRITER | UPGRADED) == 0 {
            Some(RwLockUpgradableGuard {
                phantom: PhantomData,
                inner: self,
                data: unsafe { &*self.data.get() },
            })
        } else {
            // We can't unflip the UPGRADED bit back just yet as there is another upgradeable or write lock.
            // When they unlock, they will clear the bit.
            None
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `RwLock` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut lock = spin::RwLock::new(0);
    /// *lock.get_mut() = 10;
    /// assert_eq!(*lock.read(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        // We know statically that there are no other references to `self`, so
        // there's no need to lock the inner lock.
        unsafe { &mut *self.data.get() }
    }
}

impl<T: ?Sized + fmt::Debug, R> fmt::Debug for RwLock<T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.try_read() {
            Some(guard) => write!(f, "RwLock {{ data: ")
                .and_then(|()| (&*guard).fmt(f))
                .and_then(|()| write!(f, "}}")),
            None => write!(f, "RwLock {{ <locked> }}"),
        }
    }
}

impl<T: ?Sized + Default, R> Default for RwLock<T, R> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T, R> From<T> for RwLock<T, R> {
    fn from(data: T) -> Self {
        Self::new(data)
    }
}

impl<'rwlock, T: ?Sized> RwLockReadGuard<'rwlock, T> {
    /// Leak the lock guard, yielding a reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original lock for all but reading locks.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let data: &i32 = spin::RwLockReadGuard::leak(mylock.read());
    ///
    /// assert_eq!(*data, 0);
    /// ```
    #[inline]
    pub fn leak(this: Self) -> &'rwlock T {
        let this = ManuallyDrop::new(this);
        // Safety: We know statically that only we are referencing data
        unsafe { &*this.data }
    }
}

impl<'rwlock, T: ?Sized + fmt::Debug> fmt::Debug for RwLockReadGuard<'rwlock, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized + fmt::Display> fmt::Display for RwLockReadGuard<'rwlock, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized, R: RelaxStrategy> RwLockUpgradableGuard<'rwlock, T, R> {
    /// Upgrades an upgradeable lock guard to a writable lock guard.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
    /// let writable = upgradeable.upgrade();
    /// ```
    #[inline]
    pub fn upgrade(mut self) -> RwLockWriteGuard<'rwlock, T, R> {
        loop {
            self = match self.try_upgrade_internal(false) {
                Ok(guard) => return guard,
                Err(e) => e,
            };

            R::relax();
        }
    }
}

impl<'rwlock, T: ?Sized, R> RwLockUpgradableGuard<'rwlock, T, R> {
    #[inline(always)]
    fn try_upgrade_internal(self, strong: bool) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
        if compare_exchange(
            &self.inner.lock,
            UPGRADED,
            WRITER,
            Ordering::Acquire,
            Ordering::Relaxed,
            strong,
        )
        .is_ok()
        {
            let inner = self.inner;

            // Forget the old guard so its destructor doesn't run (before mutably aliasing data below)
            mem::forget(self);

            // Upgrade successful
            Ok(RwLockWriteGuard {
                phantom: PhantomData,
                inner,
                data: unsafe { &mut *inner.data.get() },
            })
        } else {
            Err(self)
        }
    }

    /// Tries to upgrade an upgradeable lock guard to a writable lock guard.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    /// let upgradeable = mylock.upgradeable_read(); // Readable, but not yet writable
    ///
    /// match upgradeable.try_upgrade() {
    ///     Ok(writable) => /* upgrade successful - use writable lock guard */ (),
    ///     Err(upgradeable) => /* upgrade unsuccessful */ (),
    /// };
    /// ```
    #[inline]
    pub fn try_upgrade(self) -> Result<RwLockWriteGuard<'rwlock, T, R>, Self> {
        self.try_upgrade_internal(true)
    }

    #[inline]
    /// Downgrades the upgradeable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(1);
    ///
    /// let upgradeable = mylock.upgradeable_read();
    /// assert!(mylock.try_read().is_none());
    /// assert_eq!(*upgradeable, 1);
    ///
    /// let readable = upgradeable.downgrade(); // This is guaranteed not to spin
    /// assert!(mylock.try_read().is_some());
    /// assert_eq!(*readable, 1);
    /// ```
    pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
        // Reserve the read guard for ourselves
        self.inner.acquire_reader();

        let inner = self.inner;

        // Dropping self removes the UPGRADED bit
        mem::drop(self);

        RwLockReadGuard {
            lock: &inner.lock,
            data: unsafe { &*inner.data.get() },
        }
    }

    /// Leak the lock guard, yielding a reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original lock.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let data: &i32 = spin::RwLockUpgradableGuard::leak(mylock.upgradeable_read());
    ///
    /// assert_eq!(*data, 0);
    /// ```
    #[inline]
    pub fn leak(this: Self) -> &'rwlock T {
        let this = ManuallyDrop::new(this);
        // Safety: We know statically that only we are referencing data
        unsafe { &*this.data }
    }
}

impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockUpgradableGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockUpgradableGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized, R> RwLockWriteGuard<'rwlock, T, R> {
    /// Downgrades the writable lock guard to a readable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let mut writable = mylock.write();
    /// *writable = 1;
    ///
    /// let readable = writable.downgrade(); // This is guaranteed not to spin
    /// # let readable_2 = mylock.try_read().unwrap();
    /// assert_eq!(*readable, 1);
    /// ```
    #[inline]
    pub fn downgrade(self) -> RwLockReadGuard<'rwlock, T> {
        // Reserve the read guard for ourselves
        self.inner.acquire_reader();

        let inner = self.inner;

        // Dropping self removes the UPGRADED bit
        mem::drop(self);

        RwLockReadGuard {
            lock: &inner.lock,
            data: unsafe { &*inner.data.get() },
        }
    }

    /// Downgrades the writable lock guard to an upgradable, shared lock guard. Cannot fail and is guaranteed not to spin.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let mut writable = mylock.write();
    /// *writable = 1;
    ///
    /// let readable = writable.downgrade_to_upgradeable(); // This is guaranteed not to spin
    /// assert_eq!(*readable, 1);
    /// ```
    #[inline]
    pub fn downgrade_to_upgradeable(self) -> RwLockUpgradableGuard<'rwlock, T, R> {
        debug_assert_eq!(
            self.inner.lock.load(Ordering::Acquire) & (WRITER | UPGRADED),
            WRITER
        );

        // Reserve the read guard for ourselves
        self.inner.lock.store(UPGRADED, Ordering::Release);

        let inner = self.inner;

        // Dropping self removes the UPGRADED bit
        mem::forget(self);

        RwLockUpgradableGuard {
            phantom: PhantomData,
            inner,
            data: unsafe { &*inner.data.get() },
        }
    }

    /// Leak the lock guard, yielding a mutable reference to the underlying data.
    ///
    /// Note that this function will permanently lock the original lock.
    ///
    /// ```
    /// let mylock = spin::RwLock::new(0);
    ///
    /// let data: &mut i32 = spin::RwLockWriteGuard::leak(mylock.write());
    ///
    /// *data = 1;
    /// assert_eq!(*data, 1);
    /// ```
    #[inline]
    pub fn leak(this: Self) -> &'rwlock mut T {
        let mut this = ManuallyDrop::new(this);
        // Safety: We know statically that only we are referencing data
        unsafe { &mut *this.data }
    }
}

impl<'rwlock, T: ?Sized + fmt::Debug, R> fmt::Debug for RwLockWriteGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized + fmt::Display, R> fmt::Display for RwLockWriteGuard<'rwlock, T, R> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<'rwlock, T: ?Sized> Deref for RwLockReadGuard<'rwlock, T> {
    type Target = T;

    fn deref(&self) -> &T {
        // Safety: We know statically that only we are referencing data
        unsafe { &*self.data }
    }
}

impl<'rwlock, T: ?Sized, R> Deref for RwLockUpgradableGuard<'rwlock, T, R> {
    type Target = T;

    fn deref(&self) -> &T {
        // Safety: We know statically that only we are referencing data
        unsafe { &*self.data }
    }
}

impl<'rwlock, T: ?Sized, R> Deref for RwLockWriteGuard<'rwlock, T, R> {
    type Target = T;

    fn deref(&self) -> &T {
        // Safety: We know statically that only we are referencing data
        unsafe { &*self.data }
    }
}

impl<'rwlock, T: ?Sized, R> DerefMut for RwLockWriteGuard<'rwlock, T, R> {
    fn deref_mut(&mut self) -> &mut T {
        // Safety: We know statically that only we are referencing data
        unsafe { &mut *self.data }
    }
}

impl<'rwlock, T: ?Sized> Drop for RwLockReadGuard<'rwlock, T> {
    fn drop(&mut self) {
        debug_assert!(self.lock.load(Ordering::Relaxed) & !(WRITER | UPGRADED) > 0);
        self.lock.fetch_sub(READER, Ordering::Release);
    }
}

impl<'rwlock, T: ?Sized, R> Drop for RwLockUpgradableGuard<'rwlock, T, R> {
    fn drop(&mut self) {
        debug_assert_eq!(
            self.inner.lock.load(Ordering::Relaxed) & (WRITER | UPGRADED),
            UPGRADED
        );
        self.inner.lock.fetch_sub(UPGRADED, Ordering::AcqRel);
    }
}

impl<'rwlock, T: ?Sized, R> Drop for RwLockWriteGuard<'rwlock, T, R> {
    fn drop(&mut self) {
        debug_assert_eq!(self.inner.lock.load(Ordering::Relaxed) & WRITER, WRITER);

        // Writer is responsible for clearing both WRITER and UPGRADED bits.
        // The UPGRADED bit may be set if an upgradeable lock attempts an upgrade while this lock is held.
        self.inner
            .lock
            .fetch_and(!(WRITER | UPGRADED), Ordering::Release);
    }
}

#[inline(always)]
fn compare_exchange(
    atomic: &AtomicUsize,
    current: usize,
    new: usize,
    success: Ordering,
    failure: Ordering,
    strong: bool,
) -> Result<usize, usize> {
    if strong {
        atomic.compare_exchange(current, new, success, failure)
    } else {
        atomic.compare_exchange_weak(current, new, success, failure)
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLock for RwLock<(), R> {
    type GuardMarker = lock_api_crate::GuardSend;

    const INIT: Self = Self::new(());

    #[inline(always)]
    fn lock_exclusive(&self) {
        // Prevent guard destructor running
        core::mem::forget(self.write());
    }

    #[inline(always)]
    fn try_lock_exclusive(&self) -> bool {
        // Prevent guard destructor running
        self.try_write().map(|g| core::mem::forget(g)).is_some()
    }

    #[inline(always)]
    unsafe fn unlock_exclusive(&self) {
        drop(RwLockWriteGuard {
            inner: self,
            data: &mut (),
            phantom: PhantomData,
        });
    }

    #[inline(always)]
    fn lock_shared(&self) {
        // Prevent guard destructor running
        core::mem::forget(self.read());
    }

    #[inline(always)]
    fn try_lock_shared(&self) -> bool {
        // Prevent guard destructor running
        self.try_read().map(|g| core::mem::forget(g)).is_some()
    }

    #[inline(always)]
    unsafe fn unlock_shared(&self) {
        drop(RwLockReadGuard {
            lock: &self.lock,
            data: &(),
        });
    }

    #[inline(always)]
    fn is_locked(&self) -> bool {
        self.lock.load(Ordering::Relaxed) != 0
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockUpgrade for RwLock<(), R> {
    #[inline(always)]
    fn lock_upgradable(&self) {
        // Prevent guard destructor running
        core::mem::forget(self.upgradeable_read());
    }

    #[inline(always)]
    fn try_lock_upgradable(&self) -> bool {
        // Prevent guard destructor running
        self.try_upgradeable_read()
            .map(|g| core::mem::forget(g))
            .is_some()
    }

    #[inline(always)]
    unsafe fn unlock_upgradable(&self) {
        drop(RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        });
    }

    #[inline(always)]
    unsafe fn upgrade(&self) {
        let tmp_guard = RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.upgrade());
    }

    #[inline(always)]
    unsafe fn try_upgrade(&self) -> bool {
        let tmp_guard = RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        };
        tmp_guard
            .try_upgrade()
            .map(|g| core::mem::forget(g))
            .is_ok()
    }
}

#[cfg(feature = "lock_api")]
unsafe impl<R: RelaxStrategy> lock_api_crate::RawRwLockDowngrade for RwLock<(), R> {
    unsafe fn downgrade(&self) {
        let tmp_guard = RwLockWriteGuard {
            inner: self,
            data: &mut (),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.downgrade());
    }
}

#[cfg(feature = "lock_api1")]
unsafe impl lock_api::RawRwLockUpgradeDowngrade for RwLock<()> {
    unsafe fn downgrade_upgradable(&self) {
        let tmp_guard = RwLockUpgradableGuard {
            inner: self,
            data: &(),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.downgrade());
    }

    unsafe fn downgrade_to_upgradable(&self) {
        let tmp_guard = RwLockWriteGuard {
            inner: self,
            data: &mut (),
            phantom: PhantomData,
        };
        core::mem::forget(tmp_guard.downgrade_to_upgradeable());
    }
}

#[cfg(test)]
mod tests {
    use std::prelude::v1::*;

    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    type RwLock<T> = super::RwLock<T>;

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn smoke() {
        let l = RwLock::new(());
        drop(l.read());
        drop(l.write());
        drop((l.read(), l.read()));
        drop(l.write());
    }

    // TODO: needs RNG
    //#[test]
    //fn frob() {
    //    static R: RwLock = RwLock::new();
    //    const N: usize = 10;
    //    const M: usize = 1000;
    //
    //    let (tx, rx) = channel::<()>();
    //    for _ in 0..N {
    //        let tx = tx.clone();
    //        thread::spawn(move|| {
    //            let mut rng = rand::thread_rng();
    //            for _ in 0..M {
    //                if rng.gen_weighted_bool(N) {
    //                    drop(R.write());
    //                } else {
    //                    drop(R.read());
    //                }
    //            }
    //            drop(tx);
    //        });
    //    }
    //    drop(tx);
    //    let _ = rx.recv();
    //    unsafe { R.destroy(); }
    //}

    #[test]
    fn test_rw_arc() {
        let arc = Arc::new(RwLock::new(0));
        let arc2 = arc.clone();
        let (tx, rx) = channel();

        let t = thread::spawn(move || {
            let mut lock = arc2.write();
            for _ in 0..10 {
                let tmp = *lock;
                *lock = -1;
                thread::yield_now();
                *lock = tmp + 1;
            }
            tx.send(()).unwrap();
        });

        // Readers try to catch the writer in the act
        let mut children = Vec::new();
        for _ in 0..5 {
            let arc3 = arc.clone();
            children.push(thread::spawn(move || {
                let lock = arc3.read();
                assert!(*lock >= 0);
            }));
        }

        // Wait for children to pass their asserts
        for r in children {
            assert!(r.join().is_ok());
        }

        // Wait for writer to finish
        rx.recv().unwrap();
        let lock = arc.read();
        assert_eq!(*lock, 10);

        assert!(t.join().is_ok());
    }

    #[test]
    fn test_rw_access_in_unwind() {
        let arc = Arc::new(RwLock::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || -> () {
            struct Unwinder {
                i: Arc<RwLock<isize>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    let mut lock = self.i.write();
                    *lock += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.read();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_rwlock_unsized() {
        let rw: &RwLock<[i32]> = &RwLock::new([1, 2, 3]);
        {
            let b = &mut *rw.write();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*rw.read(), comp);
    }

    #[test]
    fn test_rwlock_try_write() {
        use std::mem::drop;

        let lock = RwLock::new(0isize);
        let read_guard = lock.read();

        let write_result = lock.try_write();
        match write_result {
            None => (),
            Some(_) => assert!(
                false,
                "try_write should not succeed while read_guard is in scope"
            ),
        }

        drop(read_guard);
    }

    #[test]
    fn test_rw_try_read() {
        let m = RwLock::new(0);
        ::std::mem::forget(m.write());
        assert!(m.try_read().is_none());
    }

    #[test]
    fn test_into_inner() {
        let m = RwLock::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = RwLock::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_force_read_decrement() {
        let m = RwLock::new(());
        ::std::mem::forget(m.read());
        ::std::mem::forget(m.read());
        ::std::mem::forget(m.read());
        assert!(m.try_write().is_none());
        unsafe {
            m.force_read_decrement();
            m.force_read_decrement();
        }
        assert!(m.try_write().is_none());
        unsafe {
            m.force_read_decrement();
        }
        assert!(m.try_write().is_some());
    }

    #[test]
    fn test_force_write_unlock() {
        let m = RwLock::new(());
        ::std::mem::forget(m.write());
        assert!(m.try_read().is_none());
        unsafe {
            m.force_write_unlock();
        }
        assert!(m.try_read().is_some());
    }

    #[test]
    fn test_upgrade_downgrade() {
        let m = RwLock::new(());
        {
            let _r = m.read();
            let upg = m.try_upgradeable_read().unwrap();
            assert!(m.try_read().is_none());
            assert!(m.try_write().is_none());
            assert!(upg.try_upgrade().is_err());
        }
        {
            let w = m.write();
            assert!(m.try_upgradeable_read().is_none());
            let _r = w.downgrade();
            assert!(m.try_upgradeable_read().is_some());
            assert!(m.try_read().is_some());
            assert!(m.try_write().is_none());
        }
        {
            let _u = m.upgradeable_read();
            assert!(m.try_upgradeable_read().is_none());
        }

        assert!(m.try_upgradeable_read().unwrap().try_upgrade().is_ok());
    }
}