1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
use crate::plic::{Plic, Priority};
use core::sync::atomic::{AtomicU32, Ordering};
pub use d1_pac::timer::tmr_ctrl::{
TMR_CLK_PRES_A as TimerPrescaler, TMR_CLK_SRC_A as TimerSource, TMR_MODE_A as TimerMode,
};
use d1_pac::TIMER;
use kernel::maitake::time::Clock;
pub struct Timers {
pub timer0: Timer0,
pub timer1: Timer1,
}
static TIMER0_ROLLOVERS: AtomicU32 = AtomicU32::new(0);
impl Timer0 {
const INITIAL_VALUE: u32 = u32::MAX;
pub fn into_maitake_clock(mut self, plic: &Plic) -> Clock {
use d1_pac::Interrupt;
self.set_prescaler(TimerPrescaler::P8); // 24M / 8: 3.00M ticks/s
self.set_mode(TimerMode::PERIODIC);
// Clear any previous interrupt flag.
let _ = self.get_and_clear_interrupt();
// Register the interrupt handler for when the timer rolls over.
unsafe {
plic.register(Interrupt::TIMER0, Self::maitake_timer_interrupt);
plic.activate(Interrupt::TIMER0, Priority::P1).unwrap();
}
// Start the timer counting down from u32::MAX;.
self.reset();
Clock::new(core::time::Duration::from_nanos(333), || {
let timer0 = unsafe {
// Safety: we are just reading the current value and will not be
// concurrently mutating the timer.
Self::steal()
};
// Since timer 0 is counting *down*, we have to subtract its current
// value from the intial value to get an i[ncreasing timestamp for
// Maitake. As timer 0 is a 32-bit timer, this forms the lower half
// of our 64-bit timestamp.
let lo = (Self::INITIAL_VALUE - timer0.current_value()) as u64;
// The higher half of the 64-bit timestamp is the current value of
// the 32-bit timer rollover counter --- i.e. the number of times
// that timer 0 has counted down to 0.
let hi = TIMER0_ROLLOVERS.load(Ordering::Relaxed) as u64;
// Combine the two halves to form the full 64-bit timestamp.
(hi << 32) | lo
})
.named("CLOCK_D1_TIMER0")
}
fn reset(&mut self) {
self.start_counter(Self::INITIAL_VALUE);
// N.B. that we probably don't *have* to reset the IRQ_EN bit every time
// it fires, but let's make sure it's enabled just in case...
self.set_interrupt_en(true);
}
/// Handle a TIMER0 interrupt when TIMER0 is used as the maitake timer.
fn maitake_timer_interrupt() {
let mut timer0 = unsafe {
// Safety: we need to do this to be an ISR lol
Self::steal()
};
// Clear the interrupt flag
let _ = timer0.get_and_clear_interrupt();
// Increment the rollover counter
TIMER0_ROLLOVERS.fetch_add(1, Ordering::Relaxed);
// Wait for the interrupt to clear to avoid repeat interrupts
let timers = unsafe { &*TIMER::PTR };
while timers.tmr_irq_sta.read().tmr0_irq_pend().bit_is_set() {}
// RESET THE CLOCK!
timer0.reset();
}
unsafe fn steal() -> Self {
Self { _x: () }
}
}
mod sealed {
use d1_pac::{
generic::Reg,
timer::{
tmr_ctrl::TMR_CTRL_SPEC, tmr_cur_value::TMR_CUR_VALUE_SPEC,
tmr_intv_value::TMR_INTV_VALUE_SPEC,
},
};
use super::*;
pub trait TimerSealed {
fn ctrl(&self) -> &Reg<TMR_CTRL_SPEC>;
fn interval(&self) -> &Reg<TMR_INTV_VALUE_SPEC>;
fn value(&self) -> &Reg<TMR_CUR_VALUE_SPEC>;
fn set_interrupt_en(&self, enabled: bool);
fn get_and_clear_interrupt(&self) -> bool;
}
impl TimerSealed for Timer0 {
#[inline(always)]
fn ctrl(&self) -> &Reg<TMR_CTRL_SPEC> {
let timer = unsafe { &*TIMER::PTR };
&timer.tmr0_ctrl
}
#[inline(always)]
fn interval(&self) -> &Reg<TMR_INTV_VALUE_SPEC> {
let timer = unsafe { &*TIMER::PTR };
&timer.tmr0_intv_value
}
#[inline(always)]
fn value(&self) -> &Reg<TMR_CUR_VALUE_SPEC> {
let timer = unsafe { &*TIMER::PTR };
&timer.tmr0_cur_value
}
#[inline(always)]
fn get_and_clear_interrupt(&self) -> bool {
let timer = unsafe { &*TIMER::PTR };
let mut active = false;
timer.tmr_irq_sta.modify(|r, w| {
if r.tmr0_irq_pend().bit_is_set() {
w.tmr0_irq_pend().set_bit();
active = true;
}
w
});
active
}
#[inline(always)]
fn set_interrupt_en(&self, enabled: bool) {
let timer = unsafe { &*TIMER::PTR };
timer.tmr_irq_en.modify(|_r, w| {
w.tmr0_irq_en().bit(enabled);
w
});
}
}
impl TimerSealed for Timer1 {
#[inline(always)]
fn ctrl(&self) -> &Reg<TMR_CTRL_SPEC> {
let timer = unsafe { &*TIMER::PTR };
&timer.tmr1_ctrl
}
#[inline(always)]
fn interval(&self) -> &Reg<TMR_INTV_VALUE_SPEC> {
let timer = unsafe { &*TIMER::PTR };
&timer.tmr1_intv_value
}
#[inline(always)]
fn value(&self) -> &Reg<TMR_CUR_VALUE_SPEC> {
let timer = unsafe { &*TIMER::PTR };
&timer.tmr1_cur_value
}
#[inline(always)]
fn get_and_clear_interrupt(&self) -> bool {
let timer = unsafe { &*TIMER::PTR };
let mut active = false;
timer.tmr_irq_sta.modify(|r, w| {
if r.tmr1_irq_pend().bit_is_set() {
w.tmr1_irq_pend().set_bit();
active = true;
}
w
});
active
}
#[inline(always)]
fn set_interrupt_en(&self, enabled: bool) {
let timer = unsafe { &*TIMER::PTR };
timer.tmr_irq_en.modify(|_r, w| {
w.tmr1_irq_en().bit(enabled);
w
});
}
}
impl Timer for Timer0 {}
impl Timer for Timer1 {}
}
pub struct Timer0 {
_x: (),
}
pub struct Timer1 {
_x: (),
}
pub trait Timer: sealed::TimerSealed {
#[inline]
fn set_source(&mut self, variant: TimerSource) {
self.ctrl().modify(|_r, w| {
w.tmr_clk_src().variant(variant);
w
});
}
#[inline]
fn set_prescaler(&mut self, variant: TimerPrescaler) {
self.ctrl().modify(|_r, w| {
w.tmr_clk_pres().variant(variant);
w
});
}
#[inline]
fn set_mode(&mut self, variant: TimerMode) {
self.ctrl().modify(|_r, w| {
w.tmr_mode().variant(variant);
w
});
}
#[inline]
fn stop(&mut self) {
self.ctrl().modify(|_r, w| {
w.tmr_en().clear_bit();
w
});
}
#[inline]
fn start_counter(&mut self, interval: u32) {
self.interval().write(|w| unsafe {
w.bits(interval);
w
});
// Set the reload AND enable bits at the same time
// TODO: Reset status flag or interrupt flag?
self.ctrl().modify(|_r, w| {
w.tmr_reload().set_bit();
w.tmr_en().set_bit();
w
});
}
#[inline]
fn current_value(&self) -> u32 {
self.value().read().bits()
}
#[inline]
fn get_and_clear_interrupt(&self) -> bool {
sealed::TimerSealed::get_and_clear_interrupt(self)
}
#[inline]
fn set_interrupt_en(&self, enabled: bool) {
sealed::TimerSealed::set_interrupt_en(self, enabled)
}
}
impl Timers {
pub fn new(periph: TIMER) -> Self {
// 1. Configure the timer parameters clock source, prescale factor, and timing mode by writing **TMRn_CTRL_REG**. There is no sequence requirement of configuring the parameters.
// 2. Write the interval value.
// * Write TMRn_INTV_VALUE_REG to configure the interval value for the timer.
// * Write bit[1] of TMRn_CTRL_REG to load the interval value to the timer. The value of the bit will be cleared automatically after loading the interval value.
// 3. Write bit[0] of TMRn_CTRL_REG to start the timer. To get the current value of the timer, read
// TMRn_CUR_VALUE_REG.
periph.tmr_irq_en.write(|w| {
w.tmr0_irq_en().clear_bit();
w.tmr1_irq_en().clear_bit();
w
});
Self {
timer0: Timer0 { _x: () },
timer1: Timer1 { _x: () },
}
}
}